
www.manaraa.com

Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2013-11-22

The Pseudo-Rigid-Body Model for Fast, Accurate,
Non-Linear Elasticity
Anthony R. Hall
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Hall, Anthony R., "The Pseudo-Rigid-Body Model for Fast, Accurate, Non-Linear Elasticity" (2013). All Theses and Dissertations. 3869.
https://scholarsarchive.byu.edu/etd/3869

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3869&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F3869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F3869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F3869&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsarchive.byu.edu%2Fetd%2F3869&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/3869?utm_source=scholarsarchive.byu.edu%2Fetd%2F3869&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

www.manaraa.com

The Pseudo-Rigid-Body Model for Fast, Accurate, Non-Linear Elasticity

Anthony R. Hall

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Michael Jones, Chair
Parris Egbert

Daniel Zappala

Department of Computer Science

Brigham Young University

November 2013

Copyright c© 2013 Anthony R. Hall

All Rights Reserved

www.manaraa.com

ABSTRACT

The Pseudo-Rigid-Body Model for Fast, Accurate, Non-Linear Elasticity

Anthony R. Hall
Department of Computer Science, BYU

Master of Science

We introduce to computer graphics the Pseudo-Rigid-Body Mechanism (PRBM) and the
chain algorithm from mechanical engineering, with a unified tutorial from disparate source materials.
The PRBM has been used successfully to simplify the simulation of non-linearly elastic beams,
using deflections of an analogous spring and rigid-body linkage. It offers computational efficiency
as well as an automatic parameterization in terms of physically measurable, intuitive inputs which
fit naturally into existing animation work flows for character articulation. The chain algorithm
is a technique for simulating the deflection of complicated elastic bodies in terms of straight
elastic elements, which has recently been extended to incorporate PRBM beam-elements in three
dimensions. We present a new, mathematically equivalent optimization of the 3D PRBM chain
algorithm, from its former asymptotic complexity of O(n2) in the number of elements n, to O(n).
We also extend an existing PRBM for combined moment-force loads to 3D, where the existing
3D PRBM chain algorithm was limited to 3D PRBM elements for a moment-only load. This
optimization and extension are validated by duplicating prior experimental results, but substituting
the new optimization and combined-load elements. Finally, a loose road-map is provided with
several key considerations for future extension of the techniques to dynamic simulations.

Keywords: simulation, rigid-body, mass-spring, non-linear elasticity

www.manaraa.com

ACKNOWLEDGMENTS

Dean R. Wheeler first acquainted me with the work of Larry L. Howell, and pointed me to

the PRBM as an effective method for modeling compliant mechanisms.

Murphy J. C. Randle wrote pipeline scripts for interfacing our results with existing packages

for animation and rendering. He set up the lighting, texturing, cameras, rendering, and other scene

elements necessary for the rendered images found in the figures.

Larry L. Howell generously offered his time and his expertise with PRBM techniques,

and offered early encouragement about the relevance and interest of our research goals. He

independently reviewed my thesis proposal for general soundness, and his feedback regarding the

PRBM background material and our proposed extensions helped encourage us to proceed.

H. Tracy Hall re-formulated my earliest long-hand, verbose formulas for theO(n)-optimized

chain algorithm into the compact, elegant representation of section 4.1.2 as linear combinations of

basis matrices. The results of chapter 5 came from implementing his formulation; my own later

refinement of the earlier method appears in appendix A. As a mathematical and technical consultant,

he helped push the work forward through a few key whiteboard sessions.

I would like to thank Parris Egbert and Daniel Zappala for willingly serving and giving

their time as members of my thesis committee. Dr. Egbert took additional time to review and give

important feedback for both the Thesis Proposal document and this Thesis.

My adviser and committee Chair, Michael Jones, provided invaluable support throughout

my entire program. He offered me the freedom and trust to tackle a problem and set of techniques

in which neither of us had prior expertise. He was intellectually generous, always willing to invest

the time to understand and help me clarify the new concepts and techniques I uncovered in the

literature. His technical insights were key to a number of important breakthroughs. He never kept

me intellectually subordinate, and welcomed challenging questions and push back; my confidence

www.manaraa.com

as a researcher was able to flourish as a result. His help with planning and strategy was critical in

defining a clear, manageable, and implementable scope for the project; without his guidance, the

project would have been much more difficult to manage and ultimately finish.

www.manaraa.com

Table of Contents

List of Figures viii

List of Tables ix

List of Algorithms x

1 Introduction 1

1.1 Immediate contributions of this work . 2

1.2 Long-term contributions . 3

2 Related Work 5

2.1 General versus specialized elasticity methods . 5

2.2 Finite element reduction and coarsening . 6

2.3 Specialized 1D elastic methods . 7

3 Background 10

3.1 Notation and terminology . 10

3.2 History and overview . 11

3.2.1 Overview of the PRBM . 11

3.2.2 Overview of the chain algorithm . 12

3.2.3 History of the Chain Algorithm with PRBM elements 13

3.3 PRBM recipes . 15

3.3.1 The planar PRBM for a moment load . 15

3.3.2 The planar 3R PRBM for moment and force loads 17

v

www.manaraa.com

3.3.3 The 3D 1R PRBM for a moment load . 19

3.4 Algorithms . 22

3.4.1 The chain calculations . 22

3.4.2 updateElement for the 3D 1R PRBM . 27

3.4.3 transformElement for the 3D 1R PRBM 30

4 Methods 32

4.1 Linear-time optimization of the chain algorithm 34

4.1.1 The simple bit: F i
Σ and µiΣ . 34

4.1.2 The not-so-simple bit: ρiΣ . 35

4.1.3 Putting it all together . 41

4.1.4 Extension to branching graphs . 41

4.1.5 A critical serialization point . 42

4.2 The 3D 3R PRBM for force and moment loads 43

4.2.1 updateElement for the 3D 3R recipe . 46

4.2.2 transformElement for the 3D 3R recipe 48

5 Results 49

5.1 Re-implementing [Chase et al. 2011] as a baseline 50

5.2 Our experiment setup . 50

5.2.1 Definition of error metric . 51

5.3 Experiment results . 53

5.3.1 Run times . 53

5.3.2 Error of the O(n) optimization . 53

5.3.3 Error of 3R algorithms versus 1R algorithms 56

6 Conclusion and Future work 59

6.1 Extending the static algorithm . 60

6.1.1 Alternative 3D 3R configurations . 60

vi

www.manaraa.com

6.1.2 Static constraints . 60

6.2 Proposed dynamic PRBM methods . 61

6.2.1 Reduced coordinate approaches . 61

6.2.2 Numerical integration in two key cases 62

6.2.3 Approaches to element integration (case 1) 62

6.2.4 Approaches to chain integration (case 2) 63

6.3 Directable, dynamic topology and material change 65

6.3.1 Automatic stress and fracture detection 65

6.3.2 Efficient, online material change . 66

A Alternative O(n) formulation 68

B The cross product matrix 72

References 73

vii

www.manaraa.com

List of Figures

1.1 Volume deformation modes . 2

3.1 A chain with PRBM elastic elements . 13

3.2 The pure moment-loaded 1R PRBM . 16

3.3 Su’s 3R PRBM . 18

3.4 A 3-axis revolute spring joint from Chase’s 3D PRBM 20

3.5 Illustration of chain algorithm total moment computation 26

4.1 Extension of the 3R PRBM to 3D . 44

5.1 Element tip pairings for the error metric εP . 52

5.2 Graph of runtimes for the four cases of the chain algorithm 54

5.3 Graph of the error εP from the four cases of the chain algorithm 55

5.4 Renders of deflected chains with 20, 25, 40, and 200 elements 57

viii

www.manaraa.com

List of Tables

5.1 Runtimes for all four cases of the chain algorithm 54

5.2 Error εP for all four cases of the chain algorithm 55

ix

www.manaraa.com

List of Algorithms

3.1 The O(n2) form of the chain algorithm . 24

3.2 updateElement for the 3D 1R PRBM . 28

3.3 transformElement for the 3D 1R PRBM . 31

4.1 The O(n) form of the chain algorithm . 33

4.2 updateElement for the 3D 3R PRBM . 47

4.3 transformElement for the 3D 3R PRBM . 48

x

www.manaraa.com

Chapter 1

Introduction

We introduce to computer graphics the use of the Pseudo-Rigid-Body model (PRBM)

[Howell 2001] from mechanical engineering as a key element in methods for rapidly simulating the

deformation of complicated, non-linearly elastic bodies. The PRBM has been used successfully in

the design and study of compliant (elastic) mechanisms, where it has proven to be an invaluable

tool for rapidly “sketching” and testing design prototypes [Chase et al. 2011, Howell 2001].

The methods are suitable for bodies that can be discretized into non-cyclic graphs (trees)

of prismatic elastic beam elements with arbitrary cross-sections, where the primary modes of

deformation are bending and twisting (see fig. 1.1 for examples of these and other modes of

deformation). Examples would be natural trees and other vegetation, springs, stiff cords and cables,

diving boards, and shark skeletons. PRBMs are not tuned for volume or area deformations such as

are seen in muscle, sponges, skin, or cloth. The methods target elastic deformation, or deformations

that will tend to naturally undo themselves in the absence of an external load. This is in contrast to

plastic deformation, where shape and material properties may change permanently as a result of

deformation.

The Pseudo-Rigid-Body Method is so called because it accurately simulates elastic beams

using rigid links and torsion springs which obey Hooke’s law. It therefore enables the simulation of

complicated non-linear elastic behaviors using well-established and comparatively simple methods

for simulating constrained rigid bodies, where traditional methods for non-linear elasticity would

be mathematically and computationally complex. It provides simple formulas for tuning the mass-

1

www.manaraa.com

x

y

z

(a) Twist, +x (b) Bend, +z (c) Bend, +y

(d) Squash, x (e) Stretch, x (f) Shear, −z

PR
B

M
-

Su
pp

or
te

d
PR

B
M

-
U

ns
up

po
rt

ed

Figure 1.1: Examples of beam deformation modes. Lavender shaded beams (top row) portray
deformation modes supported by the 3D PRBM. White beams (bottom row) represent modes that
are not supported by the 3D PRBM. Modes portrayed are (a) Twist or torsion by a postive angle
about the local x axis; (b) Bend by a positive angle about z; (c) Bend by a positive angle about y;
(d) Squash along x; (e) Stretch along x; and (f) Shear along the negative z axis.

spring system directly from measurable physical properties such as Young’s modulus, so conversion

from a given input model to a model for simulation can be largely automated, given appropriate

geometry and material descriptors as input. It is more versatile than classical models such as

Bernoulli’s beam equations, because it is accurate over large deflection angles.

1.1 Immediate contributions of this work

Since this paper focuses principally on static1 solutions, it will have the most immediate application

in film and games for setting static and start-of-shot poses for elastic bodies.

One example application is as an alternative to simulation pre-roll. Pre-roll is a technique

in animation to prepare a simulated body for its correct start-of-shot pose when its rest pose does

1By ‘static’, we mean that the methods identify the correct equilibrium pose a body will assume given an initial rest
pose and a set of constant loads that deflect it out of this rest pose. The rest pose represents the natural pose of the body
when all net loads are zero.

2

www.manaraa.com

not conform to the action and staging at the start of a shot—for example when a film cuts to a tree

under a steady wind, or to a character’s garment draped over their body under gravity rather than in

the originally modelled tailoring pose. Pre-roll runs a number of frames of dynamic simulation in

advance of the first shot frame, to allow the body to transition into the required starting configuration.

For static start-of-shot poses such as the examples given above, a single run of our fast static method

could substitute for numerous frames of pre-roll.

Another example application is deducing the rest pose of a model which was obtained under

an initial load—such as a tree modeled from real-life examples under the influence of gravity—by

running a static simulation on the model under equal but opposite loads.

Finally, our linear-time optimization of the chain algorithm from mechanical engineering

will immediately improve run-times for existing engineering methods based on this algorithm.

PRBM-based methods have already been applied with great success in facilitating and accelerating

the design of machines and mechanisms based on elastic behavior, and recent efforts to incor-

porate PRBM elements in the chain algorithm promise to expand the possibilities even further

[Pauly and Midha 2006, Chase et al. 2011]. The increased speed of our new form of the PRBM

chain algorithm will assist these efforts.

1.2 Long-term contributions

We hope that introducing PRBM-based methods to computer graphics will foment further study

of their application in film and games, particularly in their extension to dynamic, time-stepped

simulations for fully animated results. We anticipate numerous future contributions of this field to

the production of films and games.

These methods will benefit the work of animators and technical artists by providing visual

accuracy while reducing turnaround times for sequence and shot work. The automatic tuning of

spring stiffness values and other parameters will eliminate some trial-and-error guesswork when

3

www.manaraa.com

tuning a shot for simulation, closing the gap between what a simulation should look like given

certain physical inputs, and what it does look like.

The methods will integrate well with ongoing research efforts to make simulations more

directable. Directability aims to give direct, focused, and intuitive control of simulations to

animators and directors, without the prohibitive workload of hand-producing every detail. This is

an active area of research, with numerous significant results [Barbič et al. 2012, Coros et al. 2012,

Hahn et al. 2012, Hildebrandt et al. 2012]. In the worst case, artistic direction requires a time-

consuming, manual process of waiting for a simulation to finish, evaluating the results, adjusting

the input parameters, and repeating till the results are good enough. Directability aims to make this

process more interactive, with the simulation itself more open to artist intervention. One approach,

for example, is by fitting and deducing simulation parameters to conform to constraints supplied by

intuitive forms of input such as artist-defined targets or painted motion gestures. Two significant

requirements for such methods are that the underlying simulation method be fast enough to give

feedback at interactive rates, and that the parameter space of the simulation not be so divergent

from more intuitive animation parameters that the system cannot translate quickly between the two.

Our PRBM-based methods are fast, and are built around natural, intuitive inputs which are trivially

converted to inner simulation parameters, so they fit these two requirements for directable methods.

The efficiency and simplicity of PRBMs also suit them for incorporation in video games,

where environments, sets, and interacting objects can be greatly enriched by the introduction of

elastic behaviors.

4

www.manaraa.com

Chapter 2

Related Work

Many of the works cited in this chapter implement dynamic simulations, where this paper

focuses on static applications of the PRBM. Hence, we focus on comparisons that relate most to the

static case.

Our methods are related to existing work for general elastic methods, Finite Element reduc-

tion, and specialized methods for strands and 1D elastic materials. Our methods are less versatile

than the general methods we discuss in section 2.1, while yielding greater accuracy over some

methods and great computational efficiency over others. The Finite Element reduction methods in

section 2.2 are versatile and very fast, but remain less agile than our method in the face of dynami-

cally changing model or simulation parameters, due to non-trivial pre-computation requirements.

The specialized strand and 1D element methods which we consider in section 2.3 are better suited

than ours to scenarios requiring numerous precise constraints or intricate self-interactions, but they

either assume vanishing cross-section and thereby neglect effects such as twisting and varying

directional stiffness, require a significant mathematical background to understand, or are difficult to

parameterize correctly for physically accurate and predictable results.

2.1 General versus specialized elasticity methods

Many techniques for simulating elastic bodies specialize in either 3D, 2D, or 1D elastic elements.

Martin et al. [Martin et al. 2010] point out that this segregation can introduce errors and artifacts,

5

www.manaraa.com

especially in hybrid or boundary cases between types. To address these concerns, they unify the

representation of 3D solids, 2D shells, and 1D rods as composites of a fundamental elaston element,

which accurately captures numerous volume deformation modes such as stretch, bending, shear,

and twist.

As Müller and Chentanez [Müller and Chentanez 2011] point out, elastons sacrifice perfor-

mance for generality and accuracy. Müller and Chentanez introduce oriented particles, another

unified, general method which more simply encodes the same derivative information of elastons,

yielding real-time elastic deformations. The simulation surface is approximated from the original

fully detailed model as an aggregate of interconnected, oriented ellipsoids which are simpler to

simulate than the detailed mesh. The resulting simulation is visually plausible, though it sacrifices

geometric precision for details at a finer grain than what the ellipsoids capture. It also sacrifices

accuracy since it is less clear how to parameterize the simulation to match physical measures of

elasticity.

If we must choose only two among accuracy, generality, and performance, then PRBM-based

methods choose the remaining pair, efficiency and accuracy; where Martin et al. emphasize accuracy

and generality, and Müller and Chentanez opt for efficiency and generality. PRBM methods give

up generality by focusing on 1D elastic elements that only capture bending and twist, a subset

of the elaston’s deformation modes. But in so doing, they greatly simplify the treatment of non-

linear elasticity. They give accurate and predictable results since they are explicitly and simply

parameterized in terms of knowable physical inputs.

2.2 Finite element reduction and coarsening

Finite element methods (FEM) offer a diversity of applications, and can be directly parameterized

by physically measurable inputs. However, they can incur extravagant computational costs when

simulating fine details, as their complexity increases significantly with increasing element counts.

6

www.manaraa.com

[Kharevych et al. 2009, Nesme et al. 2009] give examples of reduction or numerical coars-

ening methods, with particular attention to the problem of retaining the emergent dynamic effects

of fine structures, which would be lost by simply ignoring or truncating higher spatial frequencies.

Nesme et al.’s innovations [Nesme et al. 2009] allow for independent motion of branching structures

that would otherwise be inappropriately coupled by sharing a single reduced element.

[Barbič and Zhao 2011] simplify the subsequent simulation of reduced meshes, as well as

the reduction process in the first place, by first partitioning the mesh into distinct sub-domains and

reducing each sub-domain separately, mitigating the poor scaling performance of FEM. During

simulation, sub-domain deformations are computed locally in real-time, and coupled to other sub-

domains at rigid interfaces, which can also be handled in real-time. Branching dynamics can be

preserved by careful selection of the sub-domains.

The reduction process for each of the above cited works is non-trivial. The runtime cost

of pre-computation is modest when performed once, but would likely become prohibitive on a

per-frame basis. The parameterization of a PRBM element, by contrast, is trivially simple from

the published formulas, and is fully local, needing no reference to other elements in the elastic

body. Therefore, conversion of the entire elastic body scales linearly in the number of elements.

We believe, when general dynamic implementations are realized, these qualities will equip the

PRBM for scenarios where online topology or material changes are desirable, such as for handling

stress-driven dynamic fracture or branch splitting, or for accommodating plastic changes such as

fatigue, creep, and other time- and event-driven material changes.

2.3 Specialized 1D elastic methods

[Bergou et al. 2008] employ discrete differential geometry to represent 1D elastic elements as a

baseline curve with a length-parameterized scalar to represent twist at points along the curve. Their

representation is physically accurate, and they show remarkable self-collision handling results involv-

ing knot-tying, tangling, and other self-interaction-related effects. Sueda et al. [Sueda et al. 2011]

7

www.manaraa.com

give results from their unique hybridization of Eulerian (space-centric) and Lagrangian (element-

centric) reference frames that demonstrate unprecedented precision and stability of constraint

enforcement.

We do not attempt intricate self-interaction and constraint handling in our work, and the

problem is likely non-trivial for PRBM elements. Though Pauly and Midha [Pauly and Midha 2006]

allude to the amenability of the chain algorithm to constraint and boundary condition enforcement,

we suspect that [Bergou et al. 2008, Sueda et al. 2011] are preferable where the application demands

intricate self-interactions and numerous precise constraints. However, the comparative efficiency of

Bergou et al.’s method is not clear, and it also requires investment if one is not already familiar with

the techniques of differential geometry, where PRBM methods principally require a grounding in

basic mechanics and the mathematics of vectors and matrices.

[Selle et al. 2008] give a mass-spring method for simulating individual hairs which accounts

for twist and facilitates collisions and friction handling. They assert that reduced coordinate2

methods (such as ours) can be difficult to adapt for collision handling. However, the implementation

we describe in this paper includes ongoing tracking of world-space coordinates and orientations,

which when combined with knowledge of element cross-sectional geometry, should mitigate the

difficulty for reasonable element densities. It may still arise for sparse element discretizations, since

current PRBM sources do not provide formulas for shape and curvature between the end-points,

only for the end-point locations and orientations, which may wind up spaced too far apart for good

collision detection.

In general, mass-spring methods can be difficult to parameterize accurately, often requiring

some guesswork and hand-tuning to arrive at the desired dynamic behavior. In contrast, the tuning

of springs internal to PRBM elements is given explicitly by simple formulas based on physically

measurable properties such as Young’s modulus and the area moment of inertia.

2For a brief description of reduced coordinates, along with some of their advantages, see section 6.2.1

8

www.manaraa.com

[Bertails 2009, Hadap 2006] each give linear-time simulation methods for open-loop (tree-

like) graphs of elastic elements, with Bertails incorporating special helical elements, and Hadap

introducing oriented strands as their fundamental element. The helix elements of Bertails, as

well as a novel clothoid model introduced by [Casati and Bertails-Descoubes 2013], are higher

order specializations of 1D elastic elements, which permits them to represent expanses of non-

straight geometry with a single element, resulting in many fewer elements overall for some body

geometries. The elements of [Casati and Bertails-Descoubes 2013] offer continuity improvements

between adjacent elements over those of [Bertails 2009].

While PRBM elements can also capture curves with only a single element, they do so only

at the element end-points (as mentioned previously), and under stricter assumptions. Furthermore,

capturing 3D space curves, as opposed to merely planar curves, can still require numerous PRBM

elements, as demonstrated by the results for varying element counts in section 5.3.3. However, the

clothoids of [Casati and Bertails-Descoubes 2013] assume vanishing cross-section inertias, whereas

the PRBM’s parameter formulas explicitly require specification of the cross-sectional inertias. As

a result, PRBMs are more general than clothoids in this respect. Indeed, the experiments of

[Chase et al. 2011], which we replicate and build upon in chapter 5, were specifically designed to

demonstrate lateral torsional buckling, an interesting 3D deformation in which the explicit treatment

of imbalanced area moments of inertia plays an essential role.

9

www.manaraa.com

Chapter 3

Background

The methods in this section primarily represent the past work of others. Though they are

available in the cited works, repeating certain details here in a unified tutorial makes a contribution

of its own. We have made changes to some of the notations, conventions, and details of the cited

algorithms, in order to support a unified framework and presentation, as well as to support our own

extensions. The results in chapter 5 confirm that we have maintained mathematical equivalence

with the original models and notation.

3.1 Notation and terminology

The term ‘PRBM’ can be used loosely to describe any of a number of different ideas. For clarity,

we will avoid this loose usage of the term, and use these more specific terms for the following cases:

(a) chain: a composite body made up of simpler PRBM elements; (b) PRBM element: a simple,

individual PRBM element; and (c) PRBM recipe: a specific set of formulas and methods that can

be followed to construct a simple PRBM element. A PRBM element normally consists of rigid

sub-elements, which we will call ‘links.’

Quantities used in the algorithms generally fall under two levels of abstraction: chain-level

quantities, and element-level quantities that are internal to a given element. The point or element

number to which a chain-level quantity belongs is denoted with a superscript, and the point or link

10

www.manaraa.com

number of an element-level quantity with a subscript. Quantities that are spatially associated with

points are indexed beginning at 0, and quantities associated with elements or links begin at 1.

A vector quantity is denoted by bold-face. An individual component of a vector quantity

is denoted by subscripted parentheses around the vector, to distinguish from the un-parenthesized

subscript for link indexing. For example, (P i
m)z denotes the z-coordinate of the mth point of

element i.

3.2 History and overview

3.2.1 Overview of the PRBM

A PRBM recipe dictates the specific configuration of links and springs that will accurately simulate

an elastic beam, given its physical properties, length, and cross-sectional geometry. The correct

choice of recipe is usually a matter of the types of loads the elastic beam will experience. For

example, there is a family of similar recipes that apply when the elastic element is cantilevered, or

fixed to a substrate at its base with the tip free to respond to a load. Among this family are separate

recipes for when that load consists only of a linear force, and when it consists only of a moment (or

torque). We will give in section 3.3 two of the original planar recipes that relate most closely to our

work, and a 3D recipe due to [Chase et al. 2011] in section 3.3.3. Numerous additional recipes may

be found in [Howell 2001].

The spring and link configuration of each PRBM recipe were tuned to minimize measures of

deflection error in comparison to a rigorous, “ground truth” model of elasticity. A PRBM element

configured and simulated using one recipe will not give accurate results under a different scenario.

Any PRBM-based method must therefore take care that the assumptions of each PRBM element are

met.

11

www.manaraa.com

3.2.2 Overview of the chain algorithm

Our description of the chain algorithm is drawn primarily from [Pauly and Midha 2006,

Chase et al. 2011, Chase 2006]. The chain algorithm is a structurally recursive technique for finding

the static equilibrium pose of an elastic body under a set of loads applied at points throughout.

The elastic continuum is first discretized as an acyclic graph (the chain), of linear elements.

As an acyclic graph, the chain may be strictly serial, or contain branches, with any number of

child elements anchored to the tip of a single parent element. A single element is designated as

the root element, and thus becomes the transitive parent (or ancestor) of all other elements. The

root typically has its base anchored to a substrate. After discretization, the precise location of each

applied load may be approximated to the nearest element tip.

The algorithm visits each element, starting at the chain’s fixed root and proceeding towards

the tip elements. As each element is visited, the structural recursion means that all its parent and

ancestor elements are held fixed, with the element itself being considered fixed at its base with a

static load at its tip. The static load is computed from all its child and descendent elements. The

element is then deformed by that load according to its internal model of elasticity, and finally all

descendent elements are rigidly transformed to match, before the algorithm proceeds to the next

element.

To converge at the correct static pose, the entire algorithm must often be repeated. Two

kinds of iteration are typically employed: end iteration and load incrementing. End iteration means

to simply repeat the chain algorithm with the pose obtained during the previous iteration. This can

be necessary because, strictly speaking, the static equations only fully apply when all elements are

in their final equilibrium configuration, but this is not the case before final convergence has been

reached. Fortunately, the current element configuration may serve as a good “best guess,” and the

static equations converge towards equilibrium under repeated application. Iteration may be stopped

when elements displacements dip below a desired tolerance.

12

www.manaraa.com

Load incrementing means to apply each external load at a fraction of its full magnitude, then

increment it to the next fraction, and repeat until the total load is reached.

Load and end iterations may be combined. For example, it worked well with our implemen-

tation to nest end iterations under each load increment. Using a greater number of load increments

can decrease the number of end iterations needed for each increment.

3.2.3 History of the Chain Algorithm with PRBM elements

Pauly and Midha [Pauly and Midha 2006] first proposed a framework for inclusion of PRBM

elements as the beam elements in the chain algorithm. We refer the curious reader to their paper

for an explanation of advantages that a PRBM chain algorithm would hold over pre-existing chain

algorithms. Chase et al. [Chase et al. 2011] successfully implemented this algorithm and extended

it to 3D. A visual depiction of a chain with PRBM elements is given in fig. 3.1.

P 0

P 1

P 2

P j

P n

P 1
2

P 2
0

P 2
1

P 2
2

P 3
0

P 3
1

P 1

P 2

el
em

en
t1

el
em

en
t 2

element j elem
ent n

el
em

en
t 2

Figure 3.1: A chain with PRBM elastic elements

The structural recursion of the chain algorithm means the most appropriate PRBM recipes

are those for a fixed-base beam with a loaded tip. But as mentioned in section 3.2.2, at the time of

13

www.manaraa.com

Pauly and Midha’s work, there was no PRBM recipe for a combined moment and force load—only

for each kind of load separately. This posed a problem since a general method would need to

handle both forces and moments at each element. They observed that each element may be modeled

using two concrete PRBM elements separately, each constructed from one of the two recipes. The

principle of superposition then allowed the correct tip translation to be obtained by adding the

translations from each element. However, superposition did not apply for the case of tip orientation,

so it remained unclear how to obtain the orientation from the two disparate recipes.

Chase et al. [Chase et al. 2011] introduced a simplifying assumption that with sufficient

element counts in the discretization, each element can be taken to have length zero. In this way

reaction forces come to act at the same point as the external applied force on the element, cancelling

it out. The applied force still gives rise to static moments at the other elements throughout the chain,

so in effect all forces are converted to moments. Thus no element need model the effect of a force

directly, and the PRBM recipe for a moment load suffices for all elements. With the additional

contribution of extending the moment-loaded PRBM recipe to 3D, Chase et al. were thus able to

realize the PRBM chain algorithm first proposed by Pauly and Midha, and in three dimensions.

The original work behind [Chase et al. 2011] first appeared in Chase’s master’s thesis

[Chase 2006]. After Chase’s original work, Su [Su 2009] introduced a new PRBM recipe that

simply and accurately handles a combined force-moment load. This recipe immediately suggests

itself as an alternative to Chase et al.’s zero-length assumption for overcoming the combined-load

problem facing Pauly and Midha’s work. As of yet, however, we have not discovered any work in

the literature which incorporates this new recipe within the chain algorithm. Since in this paper

we will incorporate a 3D extension of Su’s recipe in the chain algorithm, we will summarize Su’s

original recipe, with refinements by Chen et al. [Chen et al. 2011], as background in section 3.3.2.

14

www.manaraa.com

3.3 PRBM recipes

Sections 3.3.1 and 3.3.2 give planar recipes, which are limited to beam elements that deflect entirely

within the plane, with the load parallel to and lying inside the plane. They do not consider bending

and twisting of the element outside of the plane. Section 3.3.3 gives Chase et al.’s [Chase et al. 2011]

extension of the moment-loaded recipe to 3D, which does account for out-of-plane deflections, and

which supports arbitrary 3D moments.

3.3.1 The planar PRBM for a moment load

This recipe is summarized from [Howell 2001].

A moment-loaded PRBM element is useful for obtaining two pieces of information about

the elastic element it models: the location of the elastic element’s tip under a load, as well as the

tip’s orientation, which is the angle of the tangent line at its tip.

The moment-loaded recipe gives two straight rigid links, initially laid end-to-end in a straight

line, coupled by a torsion spring as a revolute joint. The elastic beam being modeled is assumed

to be initially straight, with uniform cross-sectional geometry along the length of the element. As

alluded to in section 3.2.1, the base rigid link is assumed fixed, with the tip link free to rotate about

the joint in response to a moment load.

The lengths of the two rigid links are respectively determined by multiplying the element’s

length l with two constants, γ1 and γ2. Note that γ1 + γ2 = 1, so that the sum of the two link lengths

is the original element length: γ1l + γ2l = l. The recipe gives these length coefficients as

γ1 = 0.2654; γ2 = 0.7346 (3.1)

15

www.manaraa.com

The recipe gives the stiffness value k for the torsional spring by the formula

k = γ2κ
EJ

l
; κ = 2.0643 (3.2)

where E is Young’s modulus of elasticity for the desired material, and J is the area moment of

inertia for the cross-sectional geometry in the direction of bending (not to be confused with the

‘mass moment of inertia’ from rigid-body dynamics). Formulas of J for various geometries can

be found in standard statics texts, such as [Young and Budnyas 2002]. The constant κ is called the

stiffness coefficient. Its value in eq. (3.2) is particular to the moment-loaded case, and differs in

other recipes.

base: link 1

tip: link 2

k

l

γ1l γ2l

M θ

θelastic = cθθ

Figure 3.2: The pure moment-loaded PRBM, comparing the rigid-body’s deflected angle to the tip
angle of the elastic element. The elastic element is shown with a dashed outline.

To obtain the static deflection of the elastic element under the load M , Hooke’s law M = kθ

is solved for the angle θ. The second rigid link is then rotated by this angle about the spring joint.

Under this rotated pose, the end tip of the second rigid link directly gives the location of the elastic

element tip. Note however, as illustrated in fig. 3.2, that the tangent line of the second rigid link

16

www.manaraa.com

does not correspond to the orientation of the elastic tip. The recipe therefore supplies the parametric

angle coefficient, cθ, which when scaled with the angle of the rigid link’s tangent line, gives the

angle of the elastic tip’s tangent:

θelastic = cθθ; cθ = 1.5164 (3.3)

Howell [Howell 2001] gives the error of θelastic as less than 0.5%, up to a maximum deflection

angle of

θmaxelastic = 124.4◦ (3.4)

Interestingly, in the particular case of the moment-loaded recipe, it happens that cθ = γ2κ,

offering a slight shortcut for computing k:

k = cθ
EJ

l
(3.5)

This is not the case in other PRBM recipes.

3.3.2 The planar 3R PRBM for moment and force loads

[Su 2009] introduced a PRBM recipe, with subsequent refinements by [Chen et al. 2011], that will

accurately model an elastic beam that is fixed at the base end, with both a force and a moment

applied at the other end.

Su’s PRBM recipe is called a 3R PRBM recipe, since the recipe incorporates three revolute

joints in contrast to the single revolute joint (1R) of many other recipes. Three torsion springs

serially connect four rigid links. Three stiffness coefficients and four link length ratios are used to

compute the spring stiffness values and link lengths.

17

www.manaraa.com

θ1

θ2

θ3

F i

M i

κ1

κ2

κ3

l

γ1l γ2l γ3l γ4l

Figure 3.3: Su’s 3R PRBM

Su gives the following formula for the stiffness value for the mth spring, for m ∈ {1, 2, 3},

in terms of the stiffness coefficient κm:

km =
EJ

l
κm (3.6)

where E is Young’s modulus of elasticity and J is the area moment of inertia in the direction of

bending, as in the 1R moment-loaded recipe. κm is given by [Chen et al. 2011] for all m:

κ1 = 3.25 κ2 = 2.84 κ3 = 2.95 (3.7)

18

www.manaraa.com

The length coefficients for the rigid links are:

γ1 = 0.12525 γ2 = 0.35025

γ3 = 0.38825 γ4 = 0.13625

(3.8)

The underlined digits in the above equation represent tweaks we have made to Chen et al.’s values

[Chen et al. 2011] so that they sum to 1. Chen et al.’s original values sum only to 0.999—which we

suppose to be an artifact of rounding—but we wish these to sum to precisely 1, since they represent

weights of the overall element length l, and we wish the link lengths to sum to exactly l.

Unlike the 1R recipes, the 3R recipe requires no parametric angle coefficient, since the

correct elastic tip orientation is given directly by the orientation of the fourth link. An important

limitation is that the 3R PRBM will not give correct predictions if there is an inflection point3 in the

elastic beam.

3.3.3 The 3D 1R PRBM for a moment load

This section is drawn primarily from [Chase et al. 2011].

Similar to the moment-loaded PRBM recipe, the 3D PRBM recipe prescribes two rigid links,

though the spring joint is now configured to allow rotation of the second link in 3D. This enables the

beam element to experience two additional deformations, out-of-plane bending and twisting, that

are not supported by the planar recipe. The 3D spring joint has three rotational degrees of freedom,

each for rotating about a different basis vector from a local, orthonormal coordinate frame. This

local frame represents the orientation of the second rigid link, and remains fixed to the link’s base

point. We choose a right-handed coordinate system, with the x-axis pointing along the length of the

element, the y-axis along its height, and the z-axis along its width (see fig. 3.4). Hence, the x-spring

3An inflection point occurs anywhere the curvature of the beam changes sign, or in other words, where the curve
changes from concave to convex or vice versa.

19

www.manaraa.com

represents axial twisting of the elastic element, and the y- and z-springs represent the two principle

axes of bending.

(θi)x

(θi)y

(θi)z
xi1

yi1

zi1
element i

Figure 3.4: A 3-axis revolute spring joint from Chase’s 3D PRBM. See section 3.1 for an explanation
of notations.

Besides the reference frame just mentioned, our implementation tracks two additional

reference frames per element compared to [Chase et al. 2011]. In this way, the interfaces of separate

elements are decoupled from each other and child elements need not be fixed initially parallel to

their parents’ tips, since each element now contains the orientation for its own links and elastic tip

without needing to refer to frames from neighboring elements.

We place frame 0 at the base point of the first link, and frame 1, as already mentioned, at

the base point of the second link. frame 2 is used to track the orientation of the tip of the elastic

element being modeled (as distinct from the orientation of the second link), and is placed at the

tip of the second link. The local x-, y-, and z-axis basis vector for the mth local frame of element i

are denoted xim, yim, and zim, respectively. For the recipe to give correct element deflections, the

20

www.manaraa.com

initial local y- and z-axes of all frames should coincide with the principle axes of the element’s

cross-sectional geometry, so that the products of inertia for the area moments are zero.

We store the current angular deflection of each torsional spring as (θi)x, (θi)y, and (θi)z,

(see fig. 3.4). These angles directly represent how far each spring of the joint has been deflected,

and give some indirect, though indeterminate, indication of the orientation of link 2 relative to frame

0. We will revisit this issue of indeterminacy below.

The stiffness values for the springs that rotate about xi1, yi1, and zi1 are set using these

formulas:

(ki)x =
Gi(Ki)x

li
(3.9a)

(ki)y = cθ
Ei(J i)y

li
(3.9b)

(ki)z = cθ
Ei(J i)z

li
(3.9c)

Equations (3.9b) and (3.9c) for (ki)y and (ki)z come from the planar moment-loaded PRBM

recipe, with (J i)y and (J i)z being the area moments of inertia for bending about the local y- and

z-axes. Ei is Young’s modulus of elasticity for the material of element i, li is the desired length of

element i, and cθ is the parametric angle coefficient from the planar recipe (eq. (3.2) in section 3.3.1).

As with the planar recipe, γ2κ can be substituted for cθ.

Gi from eq. (3.9a) is the shear modulus for element i’s material. This can be found in

standard tables, or if the material’s Poisson ratio is available, may be computed by the formula

Ei/2 (1 + νi) [Chase 2006]. (Ki)x is a torsion constant dependent on the cross-sectional ge-

ometry of the element, and can be found for many common geometries in resources such as

[Young and Budnyas 2002, Wikipedia 2013b].

21

www.manaraa.com

3.4 Algorithms

See section 3.1 for a reminder of the terms and notations used in this section.

For more cohesive class interfaces in an object-oriented implementation, we find it con-

venient to make a clear separation of concerns between internal element deformations and the

accumulations of static loads across the chain. This facilitated our runtime and error experiments

involving varied combinations of different forms of the chain algorithm with different constituent

element recipes.

As a result, our presentation of the chain algorithm differs somewhat from that of

[Chase et al. 2011], since certain portions involving element deformations and transformations are

extracted out as element object methods. The extracted methods are called updateElement and

transformElement. These methods vary depending on the particular PRBM recipe, and are given

with their respective recipes in section 3.3.3 and section 4.2, apart from the generic chain algorithm

in section 3.4.1.

The responsibility of updateElement is to compute the deflection of the element’s internal

links and local coordinate frames given the static load computed by the chain algorithm, and return

a transformation matrix representing how all its descendant elements should be transformed. The

responsibility of transformElement is to take that rigid transformation matrix and apply it uniformly

to all the points, links, coordinate frames, etc., of the passed-in element.

3.4.1 The chain calculations

For simplicity of presentation here, we make the assumption that the chain is strictly serial and

non-branching, so we may give the algorithm in terms of simple mathematical summations. The

extension of these summations to branching chains is straightforward, however, and will be given in

chapter 4.

22

www.manaraa.com

Pseudo-code for the chain algorithm with generic elements is given in algorithm 3.1. We

use the index symbol i for the element i being operated on by the outer loop, and j for a descendant

element j of element i in the inner loops.

The overall job of the chain algorithm at each step of the outer loop is to compute the

total load at element i, update its deflection according to that load, then rigidly transform all its

descendants to match its new tip location and orientation.

The total load at the tip of an element is the sum of its own applied load and its internal load.

The applied load is the net result of any loads at its tip due to the environment. Its internal load is

the sum of the static loads it experiences because of applied loads at its descendants. Separate inner

loops are involved in both computing the total load at each element and transforming the element’s

descendants.

The force component F i
Σ of the total load at element i is given by

F i
Σ =

n∑
j=i

F j (3.10)

This single formula conveniently includes both the applied force and the internal force. Pseudo-code

for this computation is found on line 2, as well as line 7 inside the inner loop, of algorithm 3.1.

The total momentM i
Σ at element i has two separable terms, µiΣ and ρiΣ, so

M i
Σ = µiΣ + ρiΣ (3.11)

µiΣ is the sum of the moments which result from the momentsM j applied to each of element i’s

descendant nodes, and ρiΣ is the sum of the static moments which result from the forces F j applied

to each of its descendant elements.

For each element j which is a descendant of element i (that is, for all j > i, under our

non-branching graph assumption), the moment that results at the tip of element i due to the moment

23

www.manaraa.com

Algorithm 3.1 The O(n2) form of the generic, element-agnostic chain algorithm, adapted from
[Chase et al. 2011, Pauly and Midha 2006]

1 for i = 1 to n do

2 F i
Σ ← 0

3 µiΣ ← 0
4 ρiΣ ← 0
5 // Init. the terms of the total load at element i

6 for j = i to n do
7 F i

Σ ← F i
Σ + F j

8 µiΣ ← µiΣ +M j

9 ρiΣ ← ρiΣ +
(
P j − P i

)
× F j

10 end for
11 // Compute eqs. (3.10), (3.12) and (3.13), the terms of the total load

12 M i
Σ ← µiΣ + ρiΣ

13 // Combine the terms of the total moment
14 Ri ← updateElement(element i,F i

Σ,M
i
Σ)

15 // Bend element i and get its elastic tip transformation

16 for j = i+ 1 to n do
17 transformElement(element j,Ri)
18 end for
19 // Apply the elastic tip transformation to all descendants

20 end for

24

www.manaraa.com

M j applied at element j is simplyM j . Thus, the accumulated value µiΣ of these moments is

µiΣ =
n∑
j=i

M j (3.12)

Similar to eq. (3.10), the range of summation in this equation includes the applied momentM i as

well as the terms of the internal moment, so the term µiΣ of the total moment is covered by a single

equation. Code for this summation appears on lines 3 and 8 of algorithm 3.1.

For each element j which is a descendant of element i, the moment that results at the tip of

element i due to the force F j applied at the tip of element j is computed using the cross-product

form of the standard torque equation, with the lever arm as the vector from the tip of element i to

the tip of element j. This lever arm is computed with the expression P j − P i, so the moment is

(P j − P i)× F j . Thus, the accumulated value ρiΣ of these moments is

ρiΣ =
n∑
j=i

(P j − P i)× F j (3.13)

Just like eqs. (3.10) and (3.12), this summation range includes element i itself. Though technically

the torque for the index i is not part of the internal moment, it comes out to zero since P i−P i = 0,

so including it causes no error and in fact simplifies implementation a bit. The code for this last

summation appears on lines 4 and 9 of algorithm 3.1.

Figure 3.5 visually depicts the computation of eq. (3.13) for ρ1
Σ and ρ2

Σ in the left and

right panels, respectively. These two computations occur during two separate steps of the chain

algorithm’s outer loop.

25

www.manaraa.com

P 0

P 1

P 2

P j

P n

P
j − P

1

P
n − P

1

F 1

F 2
F j

F n

P 0

P 1

P 2

P j

P n

P n− P 2

F 1

F 2
F j

F n

︷ ︸︸ ︷
n∑

j= 1

(P j − P 1)× F j

︷ ︸︸ ︷
n∑

j= 2

(P j − P 2)× F j

el
em

en
t1

el
em

en
t1

el
em

en
t 2

Figure 3.5: The process of computing and summing each term of the total moment at element 1 (left)
and element 2 (right), respectively, which arises from forces applied at their respective descendent
nodes.

The left panel of fig. 3.5 depicts traversal of the inner loop with element 1 as the parent

element (meaning the outer loop is at element 1). The right panel is similar, with element 2 as the

parent element. In each, the parent element is circled and filled in red. The lever arm from the parent

to each of its descendants is depicted with a blue arrow, and the force applied at each descendant

with a black arrow. The inner loop for computing the moment sum begins at the parent element and

traverses towards the leaf elements, computing each torque and adding as it goes.

Finally, the two terms µiΣ and ρiΣ of the total moment M i
Σ for element i are combined at

line 12 of algorithm 3.1. The element is then deflected according to the total load F i
Σ andM i

Σ at

line 14 by calling updateElement, which returns the transformation matrix Ri
Σ. Ri

Σ is then applied

to each descendent element j (though not to element i itself) in an inner loop on lines 16-18, so that

they are rigidly transformed to match element i’s new tip location and orientation.

26

www.manaraa.com

3.4.2 updateElement for the 3D 1R PRBM

[Chase et al. 2011] gives a unified presentation of individual element deflections and chain calcula-

tions under a single algorithm. We differ in our presentation by factoring out the element deflection

steps from the chain algorithm as a new method we call updateElement. Decoupling updateElement

from the chain algorithm with a clean interface permits us to define updateElement polymorphically,

with different versions for the deflection computations required by different PRBM recipes. The

chain algorithm may then be adjusted trivially for different PRBM types simply by calling the

appropriate version of updateElement.

updateElement interfaces with the chain algorithm by receiving a total load as a function

argument alongside the element in question, and by returning to the chain algorithm a transformation

matrix. The returned matrix is formed by tracking and composing all the transformations that the

element tip experiences during computation of the deflection. Thus, when updateElement returns

this cumulative transformation matrix, the chain algorithm may then correctly update all the

element’s child elements.

In this section, we present the version of updateElement for Chase et al.’s 3D 1R PRBM.

The algorithm works on each of the three local element axes in turn. For the current axis being

operated on, it computes an angle of rotation from the static spring equation and the projection

of the total moment M i
Σ onto that axis. The element tip point is rotated around that axis by the

computed angle, with the base point of the second link as the center of rotation. The other two axes

are then rotated similarly. The algorithm then moves on to operating on each of the next two axes in

the same way.

The matrix Ri representing the overall tip transformation, which will be returned to the

chain algorithm, is initialized to the identity matrix I on line 1 of algorithm 3.2.

Lines 3-6 are concerned with preparing a separate world-space rigid rotation matrix (R1)link
u ,

to be used in rotating the second rigid link of the element about the current axis u. The angle of

27

www.manaraa.com

Algorithm 3.2 updateElement for an element i from Chase et al.’s 3D PRBM recipe

1 Ri ← I

2 for each local axis u ∈ {x,y, z} do

3 (θi)u ←
(
M i

Σ · ui1
)
/(ki)u

4 (∆θ1)link
u ← (θi)u − (θi)old

u

5 (R1)link
u ← rotationMatrix

 axis = ui1
angle = (∆θ1)u
origin = P i

1


6 // Rotation for second rigid link

7 if u is x then
8 (R2)tip

u ← I
9 // No additional elastic tip rotation for x

10 else
11 (∆θ2)tip

u ← cθ(∆θ1)link
u − (∆θ1)link

u

12 (R2)tip
u ← rotationMatrix

 axis = ui1
angle = (∆θ2)tip

u

origin = P i
2


13 // Additional rotation of elastic tip for y and z
14 end if

15 P i
2 ← (R1)link

u P i
2

16 // Rotate rigid tip point of second link
17 for v as each of the other two, non-u axes, do
18 vi1 ← (R1)link

u vi1
19 // Rotate local frame for second link
20 vi2 ← (R1)link

u (R2)tip
u v

i
2

21 // Rotate local frame for elastic tip orientation
22 end for

23 Ri ← (R1)link
u (R2)tip

u Ri

24 // Accumulate elastic tip transformations
25 end for

26 return Ri

28

www.manaraa.com

rotation (θi)u is computed in line 3, by solving Hooke’s spring equation with the stiffness value

(ki)u of the spring for the current axis, which was computed in eq. (3.9); and the projected moment

M i
Σ · ui1, which is the dot product of the total moment and the current spring axis vector. We will

rotate only by the difference between the currently computed angle (θi)u and its value (θi)old
u from

the previous chain iteration, so we compute this on line 4 and call it (∆θ1)link
u . Finally, on line 5,

(R1)link
u is set as a rotation matrix for rotation about the spring vector ui1 for the current axis, by the

difference angle (∆θ1)link
u , with the location P i

1 of the spring joint as the center of rotation.

Lines 7-14 compute an additional world-space matrix, (R2)tip
u , for orienting the elastic tip of

the element and for conveying additional information about how descendant elements should be

transformed. When x is the current axis, no additional rotation is required beyond what (R1)link
x

already provides, so in that case the “additional” rotation (R2)tip
x is simply set to the identity matrix

I on line 8.

Some additional transformation is required at the elastic element tip when y or z are the

current operating axes, however, since the action of the springs for those axes is taken from the

original planar moment-loaded PRBM recipe, which requires scaling the rigid rotation of the second

link by the parametric angle coefficient cθ to obtain the proper elastic tip orientation.

Thus, when the current axis u represents y or z, an additional angle of rotation (∆θ2)tip
u

is computed on line 11. Since (R1)link
u already provides the amount of rotation that comes before

scaling by cθ, we don’t use the full scaled difference angle cθ(∆θ1)link
u , but only its difference with

the unscaled difference angle (∆θ1)link
u . This is then used on line 12 as the angle of rotation for the

additional rotation matrix (R2)tip
u , for rotation around the current spring axis vector ui1, with the

element’s tip point P i
2 as the center of rotation.

The rigid rotation is applied in lines 15-19 by multiplying (R1)link
u with the other two

local axis vectors of frame 1 and with the element’s tip point P i
2. On line 21, the elastic tip

orientation at frame 2 is updated by both the rigid transformation (R1)link
u and the additional elastic

tip transformation (R2)tip
u .

29

www.manaraa.com

The accumulated descendant transformation Ri is updated on line 24 before moving on to

the next axis of operation. It is finally returned to the chain algorithm on line 26, after all three local

axes have been operated on.

The order in which we apply the rigid link transformation (R1)link
u and the elastic tip

transformation (R2)tip
u on lines 20 and 23 is important. The order of transformation is read right

to left, so we are first applying (R2)tip
u then (R1)link

u . This is important since (R2)tip
u was formed

in lines 7-14 for rotation around the old location of the element tip P i
2, before line 15 where the

element tip P i
2 receives the actual transformation. So the effect of this order of transformations,

when it is eventually applied by the chain algorithm to descendant elements, is to first hold still

the tip of the parent element i and rotate the descendants around it, then to rotate the descendants

together with the tip around the parent element i’s spring joint at P i
1. If the transformations were

applied in the opposite order, the descendants would first be rotated together with the parent’s tip

by (R1)link
u around the spring pivot point P i

1, but then would be transformed by (R2)tip
u around the

location where the parent tip point used to be, so it would now pivot around a point other than the

current location of the parent tip. This would incorrectly disconnect descendants from the parent’s

tip, introducing gaps between chain elements.

Note that any order of the axes of operation for the loop at line 2 could have been chosen,

for example {z,y,x} or {y,x, z}. This would have led to a different overall order of rotations,

and since rotations of this sort are non-commutative, would have given a different result. Thus, this

element update procedure does not give a uniquely determined deflection for a given load. Chase et

al. [Chase et al. 2011] note, however, that since we assume that elements have very short length,

the rotation error will be small. In practice, these errors converge to zero under iteration.

3.4.3 transformElement for the 3D 1R PRBM

Defining a polymorphic transformElement method with different versions for each PRBM recipe is

another essential part of decoupling PRBM deflection computations from the chain algorithm.

30

www.manaraa.com

Thus, this section provides a version of transformElement for Chase et al.’s 3D 1R PRBM

[Chase et al. 2011], in algorithm 3.3. transformElement transforms the entire element rigidly with

no internal deflection or deformation using a transformation matrix that would have been returned

previously from updateElement.

Algorithm 3.3 transformElement for an element j from Chase et al.’s 3D PRBM recipe

1 for m = 0 to 2 do

2 P j
m ← RiP j

m

3 for each local axis u ∈ {x,y, z} do
4 ujm ← Riujm
5 end for

6 end for

Care should be taken when transforming point locations and local basis vectors, since

the transformation matrix Ri passed in from the chain algorithm includes translations as well as

rotations4. The points P i
m should be affected by these translations, since they represent locations

in space, whereas the basis vectors uim should not, since they only represent directions. In our

own implementation, we accomplished this distinction by using 4x4 transformation matrices and

4-dimensional vectors with homogenous coordinates. We gave a 1 for the w-coordinate in points,

and a 0 for the w-coordinate in basis vectors.

4Translations will show up in any matrix that rotates around points other than the origin, as these matrices do, since
the effect of such a rotation is to first translate the center of rotation to the origin, apply the rotation, then translate this
“temporary origin” back to the center of rotation.

31

www.manaraa.com

Chapter 4

Methods

This chapter explains our extensions to the 3D PRBM chain algorithm of [Chase et al. 2011].

Pseudo-code for our O(n) optimization of the chain algorithm is listed near the beginning of this

chapter as algorithm 4.1 for convenient reference, and is derived in section 4.1. Section 4.2 extends

the combined-load 3R PRBM recipe of [Su 2009, Chen et al. 2011] to a 3D recipe that supports

out-of-plane bending and twisting. An explanation of the terms and notations used in the sections

and algorithms can be found in section 3.1.

Thanks to our previous refactoring of the chain algorithm into the chain calculations of

algorithm 3.1 in section 3.4.1 and the polymorphic element methods updateElement and transform-

Element, constructing a chain algorithm with a different type of element is simply a matter of

substituting updateElement and transformElement from a different PRBM recipe. Thus, a new 3D

3R PRBM chain algorithm can be created by combining the new 3D 3R recipe from section 4.2 and

its associated updateElement (algorithm 4.2) and transformElement (algorithm 4.3) methods with

either the unoptimized chain algorithm in algorithm 3.1 or the optimized algorithm in algorithm 4.1.

32

www.manaraa.com

Algorithm 4.1 The optimized chain algorithm with O(n) runtime complexity

1 F n
Σ ← F n

2 µnΣ ←Mn

3 for each index pair α, β in a 4x4 matrix do
4 σnαβ ← [F n]T×EαβP

n

5 end for
6 // Initialize accumulated values at “leaf” elements

7 for each element i = n− 1 to 1 do
8 F i

Σ ← F i+1
Σ + F i

9 µiΣ ← µi+1
Σ +M i

10 for each index pair α, β do
11 σiαβ ← σi+1

αβ + [F i]
T

×EαβP
i

12 end for
13 end for
14 // Pre-compute accumulated values at “non-leaf” elements

15 R1
Σ ← I

16 // First accumulated transformation is no transformation

17 for each element i = 1 to n do
18 transformElement(element i,Ri

Σ)
19 // Apply the accumulated transformation to this element

20 aiΣ ← 0
21 for each axis pair α, β do
22 aiΣ ← aiΣ + riαβσ

i
αβ

23 end for
24 // Compute aiΣ, eq. (4.8)

25 biΣ ←
(
Ri

ΣP
i
)
× F i

Σ

26 // Compute biΣ, eq. (4.5)

27 M i
Σ ← aiΣ − b

i
Σ + µiΣ

28 // The final total moment at element i

29 Ri ← updateElement(element i,F i
Σ,M

i
Σ)

30 if i 6= n then
31 Ri+1

Σ ← RiRi
Σ

32 end if
33 // Accumulate the transformation for the next
34 // element i+ 1 (unless there is no next element)
35 end for

33

www.manaraa.com

4.1 Linear-time optimization of the chain algorithm

We convert the O(n2) chain algorithm shown in algorithm 3.1 to the O(n) form of algorithm 4.1 by

computing eq. (3.10), eq. (3.12), and eq. (3.13) for all i in linear time. This is done by converting

the inner loops of the O(n2) algorithm to a series of fast linear-time pre-computations that can be

updated in constant time during each step of the outer loop, while yielding the same results. The

terms F i
Σ from eq. (3.10) and µiΣ from eq. (3.12) are simpler to convert than ρiΣ from eq. (3.13).

The conversions of F i
Σ and µiΣ are detailed in section 4.1.1, and that of ρiΣ in section 4.1.2.

4.1.1 The simple bit: F i
Σ and µiΣ

We begin with the straightforward portion of the optimization which will introduce the form of the

other portions.

Recall eq. (3.10) for the total force F i
Σ at the tip of element i, and the term µiΣ from

eqs. (3.11) and (3.12), which represents the portion of the internal moment at element i that results

from moments applied to element i and its descendent elements:

F i
Σ =

n∑
j=i

F j; µiΣ =
n∑
j=i

M j

In the static kinematic context of the chain algorithm, applied loads never vary from one step of the

outer iteration to the next, so the value of F j for a given j is constant regardless of the value of i.

Thus, for any given i, it is true that
∑n

j=i F
j = F i +

∑n
j=i+1 F

j . Using this recursive formulation,

we can pre-compute F i
Σ for all i in a single linear-time scan from n to 1. As we visit each element,

we add its applied force to the sum we had stored at the previous element, and store the new sum at

the current element. We show the initialization of this computation on line 1 of algorithm 4.1, and

the pre-computation for all i on line 8, inside the pre-computation loop. This scan need only be

done once, ahead of time, before entering the chain algorithm’s main outer loop, which appears on

lines 17-35 of algorithm 4.1.

34

www.manaraa.com

The outer loop is so called because it serves the same general function as the outer loop

from the old O(n2) algorithm, though the optimized version no longer has a corresponding inner

loop.

After entering the outer loop, each step of the loop simply looks up the value of F i
Σ when it

is needed. The old formulation of the chain algorithm was wasteful because it did not store and

make use of previously computed values in this way—it repeated all but one of the same addition

operations from one step of the outer loop to the next.

µiΣ can be pre-computed for all i using this same idea. This is accomplished on lines 2 and

9 of algorithm 4.1.

Each of these recursive, cumulative sums is an example of a vector scan (to borrow the

terminology of [Harris et al. 2007]), which is the same as a vector reduction, with the difference

that intermediate results are kept stored, in order, rather than discarded. In the case of F i
Σ and µiΣ,

we are performing a suffix scan over a vector containing all of the applied forces in order, with

addition as the scan operator.

Interestingly, while vector scans can be computed in O(n) time as a simple serial algorithm,

they have also been studied as a fundamental operator in parallel computing, and very efficient

implementations have even been realized for the GPU [Harris et al. 2007].

4.1.2 The not-so-simple bit: ρiΣ

Optimizing the second term from eq. (3.11), ρiΣ, is less straightforward. Consider again the equation

for this term,

ρiΣ =
n∑
j=i

(P j − P i)× F j (4.1)

Just as for µiΣ, the O(n2) implementation of the chain algorithm computed this O(n) expression n

times—once for each i ∈ [1, n]—giving rise to its O(n2) complexity. Our next step in re-factoring

the old chain algorithm hinges on a particular way of breaking apart and re-writing this equation in

35

www.manaraa.com

terms of stored, pre-computed values, with an update step that can be performed in constant time

during each step of the new chain algorithm’s outer loop. Suffix vector scans will also play a role in

this optimization, though some additional manipulations are necessary.

Equation (4.1), as originally presented in the old chain calculations of section 3.4.1, must

be interpreted according to the algorithm’s current state—that is, it only applies in the context of

the current step i. At each step i, the points
{
P i, . . . ,P n

}
will have been transformed during the

previous step i− 1. This means that the locations represented by the points
{
P i, . . . ,P n

}
all vary

in i, not just P i itself—in other words, if the set of point locations A equals
{
P i+1, . . . ,P n

}
during

step i of the outer loop, and the setB equals
{
P i+1, . . . ,P n

}
during step i+1 of the outer loop, then

A 6= B, even though the sets cover the same indices. Thus the actual locations
{
P i, . . . ,P n

}
in the

summation expression of eq. (4.1) will depend on the range of summation, so it is not appropriate

to directly compare or relate a summation having one range to a summation having another. For

a contrasting example, in optimizing the computation of µiΣ, we could rely on the fact that the

value ofM j never varied with i, so it was correct to observe that
∑n

j=iM
j = M i +

∑n
j=i+1M

j .

However, A similar relationship would not be true for the summations
∑n

j=i (P
j − P i)× F j and∑n

j=i+1 (P j − P i+1)× F j , since even when j from the first is equal to j from the second, P j

from the first is not equal to P j from the second.

Just like the other optimizations, our optimization of eq. (4.1) depends on relating summa-

tions of different ranges, so we first wish to re-write eq. (4.1) with the points in
{
P i, . . . ,P n

}
as

constants in i, so that in and of themselves they only represent the chain’s initial configuration,

and not their latest updated positions, regardless of the range of summation. This is done by

making their updated transformations explicit, by introducing a transformation matrix Ri
Σ and

left-multiplying it with the now-constant points, then replacing the points in the original eq. (4.1)

with this matrix-point product. Ri
Σ represents the cumulative transformation that all the points{

P i, . . . ,P n
}

in the summation range have undergone as a result of steps 1 through i− 1 of the

old chain algorithm’s outer loop. Re-writing eq. (4.1) in this way now frees all the quantities except

36

www.manaraa.com

Ri
Σ from the context of the algorithm’s outer loop over i:

ρiΣ =
n∑
j=i

(
Ri

ΣP
j − Ri

ΣP
i
)
× F j (4.2)

From eq. (4.2) on, the symbols
{
P 1, . . . ,P n

}
will be interpreted to represent constant locations

through the duration of the algorithm, and the matrix Ri
Σ will explicitly represent their most current

transformation.

To summarize, this new eq. (4.2) offers the property that even in two different contexts, that

is, for different values of i, if j from the first context is equal to j from the second, then P j in

the first context is guaranteed to equal P j from the second. So, it finally becomes appropriate to

manipulate and compare summations of different ranges, so long as appropriate care is taken with

Ri
Σ which depends on i.

Ri
Σ is the result of successive application of individual transformation matrices, each re-

sulting from a single call to updateElement during a separate previous step of the old outer loop.

Denoting these matrices in order as {R1, . . . ,Ri−1}, and recalling that applying a transformation

matrix means multiplying on the left,

Ri
Σ = Ri−1Ri−2 · · ·R1 (4.3)

Note that Ri
Σ can be computed with a single matrix multiplication if we already have Ri−1 and Ri−1

Σ ,

since by this recursive formulation, Ri
Σ = Ri−1Ri−1

Σ .

37

www.manaraa.com

Equation (4.2) can be factored and distributed as shown, using the fact that both matrix

multiplication and application of the cross product distribute over column vector addition:

ρiΣ =
n∑
j=i

(
Ri

ΣP
j
)
× F j −

n∑
j=i

(
Ri

ΣP
i
)
× F j

=
n∑
j=i

(
Ri

ΣP
j
)
× F j −

(
Ri

ΣP
i
)
×

(
n∑
j=i

F j

)

The factor Ri
ΣP

i may be pulled out of the second summation because it is constant over the index j

of summation, and because the cross product with F j obeys the distributive property. Note, however,

that though Ri
Σ is constant over the index of the first summation, we may not pull it out of that

summation in a similar way, because its matrix multiplication with P j does not obey the associative

principle with the subsequent cross product, i.e.
(
Ri

ΣP
j
)
×F j 6= Ri

Σ

(
P j × F j

)
. Thus, the matrix

multiplication must occur before the cross product, and its result is not constant in j, and clearly

neither is F j , so at no point in the first summation term is there a simple separable factor that is

constant in j.

It will now be convenient to name these two terms:

aiΣ =
n∑
j=i

(
Ri

ΣP
j
)
× F j (4.4a)

biΣ =
(
Ri

ΣP
i
)
×

(
n∑
j=i

F j

)
(4.4b)

so ρiΣ = aiΣ − b
i
Σ.

The summation factor of the cross-product in eq. (4.4b) for biΣ is simply F i
Σ which will

already have been pre-computed for all i. Thus, during any given step i of the new algorithm, biΣ

may be computed in constant time using Ri
Σ from the previous algorithm step, by looking up F i

Σ,

38

www.manaraa.com

and computing

biΣ =
(
Ri

ΣP
i
)
× F i

Σ (4.5)

This computation is performed in the pseudo-code on line 25 of algorithm 4.1.

Equation (4.4a) for aiΣ may also be computed in constant time, with the right set of pre-

computations. The first manipulation of eq. (4.4a) we perform is to re-write the cross product

expression as a matrix multiplication. We form the cross-product matrix5 from the cross-product

operand F j rather than than from Ri
ΣP

j , because we are preparing a pre-computation that must be

independent of the i in Ri
Σ.
(
Ri

ΣP
j
)
× F j thus becomes [F j]

T

×
(
Ri

ΣP
j
)
, so:

aiΣ =
n∑
j=i

[F j]
T

×Ri
ΣP

j (4.6)

Next, we recall that matrices form a vector space over matrix addition and multiplication by a scalar;

that is, any matrix may be written as a linear combination of a set of spanning basis matrices. For

the sixteen basis matrices of our 4x4 transformations, we choose the natural bases Eαβ for all index

pairs α, β, where the α, βth entry of Eαβ is 1, and all other entries are 0. Now, denoting the α, βth

entry of Ri
Σ as riαβ , we may re-write Ri

Σ as

Ri
Σ =

∑
α,β

riαβEαβ (4.7)

We now substitute this expression into eq. (4.6) to obtain:

aiΣ =
n∑
j=i

[F j]
T

×

(∑
α,β

riαβEαβ

)
P j

5See appendix B

39

www.manaraa.com

Now, since neither [F j]
T

× nor P j vary with α or β, they can be moved inside the inner

summation. Then, since the entire nested sum is a finite sum, we can switch the order of summation:

=
n∑
j=i

∑
α,β

[F j]
T

×r
i
αβEαβP

j

=
∑
α,β

n∑
j=i

[F j]
T

×r
i
αβEαβP

j

Finally, we note that, since scalar-matrix multiplication with the scalar riαβ is commutative,

and since riαβ is invariant over the index of summation j, we can move it to the left of the inner

summation expression, then pull it out of the inner summation entirely:

aiΣ =
∑
α,β

riαβ

n∑
j=i

[F j]
T

×EαβP
j

Let us give the name σiαβ to the inner summation in this new expression for aiΣ, so σiαβ =∑n
j=i [F

j]
T

×EαβP
j . Since none of the quantities in this summation vary with i, we can apply to

it the same pattern of vector scan as before to obtain
{
σ1
αβ, . . . ,σ

n
αβ

}
for all i. We must do this

16 times, to obtain a separate vector for each index pair α, β of the 4x4 transformation matrix.

Similar to the other vector scans, we only need to compute these 16 vectors once, at the start of the

algorithm. These pre-computed scans are initialized on lines 3-5 of algorithm 4.1, and completed

for all remaining i inside the pre-computation loop, on lines 10-12.

With these 16 pre-computed vectors in hand, we can now compute aiΣ in constant time given

any Ri
Σ with entries riαβ:

aiΣ =
∑
α,β

riαβσ
i
αβ (4.8)

40

www.manaraa.com

The computation takes constant time in n because the size of the summation is always fixed at 16

terms (one for each index pair α, β), and because σiαβ was computed previously. This is shown on

lines 20-24 of algorithm 4.1.

The O(n) method of computing aiΣ we have given here is what we implemented for the

results given in chapter 5. For interest’s sake, in appendix A we also include an alternative linear-

time method of computing aiΣ from eq. (4.4a), for which a concise and presentable formulation

emerged only after implementation.

4.1.3 Putting it all together

Having pre-computed µiΣ for all i, and knowing how to compute aiΣ and biΣ for the current element i

of the “outer loop” given the cumulative transformation Ri
Σ up to that point, we can finally compute

the total moment (line 27 of algorithm 4.1):

M i
Σ = aiΣ − biΣ + µiΣ (4.9)

With the total moment M i
Σ at element i and the total force F i

Σ, we can now call ‘update-

Element,’ get from it element i’s update transformation Ri, and compose its transformation with the

accumulated transformation Ri+1
Σ for the next element i+ 1. This all takes place on lines 29-34 of

algorithm 4.1.

4.1.4 Extension to branching graphs

We summarize our extension of the optimized chain algorithm to tree-like graphs. Our extension

is built upon the abstraction of a graph data structure that supports depth-first traversal with both

pre-order and post-order visitor operations. We used the Boost Graph Library [Siek et al. 2011] in

our implementation, though any graph structure that supports user-defined visitor callbacks will

work.

41

www.manaraa.com

In the graph-based O(n) algorithm, each instance of a loop over all the elements is replaced

with a depth-first search starting from the root-element, with either a pre-order visitor or a post-order

visitor. As expected, a pre-order visitor is called upon to operate on an element before any of

that element’s children, whereas a post-order visitor is called upon only after all the element’s

children have been visited. Both types of visitor are given two callback methods they may invoke:

an element callback to operate on the element directly, and an edge callback to operate on a single

pair of parent-child elements. The pre-order visitor first invokes the element callback, then invokes

the edge callback once for each child, with the current parent element paired with each in turn.

The post-order visitor first invokes the edge callback for the element paired with each of its child

elements, then invokes the element callback for the parent itself.

The pre-computation loop on lines 7-14 of algorithm 4.1 is thus translated into a depth-first

search by providing the appropriate element and edge callbacks. Since the loop only performs suffix

scans, a post-order visitor is needed. The element callback adds the element’s applied force to its

total force, and the edge callback adds the child element’s total force to the parent element’s total

force. Each callback does similarly for the applied moment and the 16 σiαβ quantities.

The chain loop on lines 17-35 of algorithm 4.1 is translated using a pre-order visitor, since

it must propagate the accumulated rigid transformation from the root to the leaves. The element

callback does most of the work, since most operations within the loop can be done in place for the

current element. The exception comes at line 31, where the updated accumulated transformation

matrix is forwarded to each child via the edge callback.

4.1.5 A critical serialization point

The recursive form of eq. (4.3) would seem to show that the vector of cumulative transformation

matrices {R1
Σ, . . . ,R

n
Σ} could also result from a vector scan, where the scan operation is left-

multiplication by a matrix on the input {R1, . . . ,Rn}.

42

www.manaraa.com

Unfortunately, though we previously noted the existence of efficient parallel algorithms for

vector scans, there is an important difference which has thus far prevented parallelization of this case.

For the vector scan producing {µ1
Σ, . . . ,µ

n
Σ}, all the entries of the input vector

{
M 1, . . . ,Mn

}
are known independently and in advance, so the scan can be decoupled from the outer loop of the

chain algorithm. For the vector of the individual transformation matrices {R1, . . . ,Rn}, however,

the value of each matrix Ri is dependent on the previous matrix Ri−1 through the chain calculations

of step i− 1. Thus, each matrix in the vector cannot be known independently in advance, so the

same method of vector scan cannot apply in advance of the chain loop. This processing dependency

appears to create a critical serialization point between each step of the loop.

4.2 The 3D 3R PRBM for force and moment loads

We extend the 3R PRBM recipe of [Su 2009, Chen et al. 2011] (see section 3.3.2) to three dimen-

sions. Like the planar 3R recipe, this recipe accurately models a cantilevered beam element with a

combined force-moment load at the free tip. Unlike the planar recipe, it accounts for out-of-plane

bending and twisting.

We replace the 1-DOF spring joints of the planar recipe with Chase et al.’s 3-DOF spring

joints [Chase et al. 2011]. We attach a local coordinate frame to the base of each link. Three frames

service a 3-DOF revolute joint and indicate the orientation of the following rigid link. The remaining

frame serves only to orient the base link, with no associated spring joint.

Since the last rigid link of the planar 3R PRBM recipe directly gives the correct elastic

tip orientation (see section 3.3.2), we presumed that our 3D 3R recipe would likewise need no

additional rotation information for the final tip. The results in chapter 5 affirm that this was a valid

assumption. Thus, no additional local frame is needed for the tip of the last link; all the information

needed is provided by the frame of the final spring joint.

43

www.manaraa.com

element i
ki3 =


(ki3)x

(ki3)y

(ki3)z



P i
0

P i−1

P i
1

P i
2

P i
3

P i
4

P i

F i

M i

frame 2 =


xi2

yi2

yi2


link 1

link 2

link 3

link 4θi2 =


(θi2)x

(θi2)y

(θi2)z



Figure 4.1: Extension of the 3R PRBM to 3D

Figure 4.1 depicts an example element i for our 3D 3R recipe. As with the planar 3R recipe,

the length of the mth link is given by γmli, where li is the length of the ith element. See eq. (4.10c)

for the values of γm for all m. At a given joint m, the angle vector θim stores the current angle of

deflection around each local axis in each of its respective components. kim does similarly for the

spring stiffness values. The applied force F i and momentM i are depicted at the element tip.

Equation (4.10a) gives formulas for setting the stiffness of each of the three springs for

joint m of element i, with the necessary constants listed in eqs. (4.10b) to (4.10d). Just like in

Chase et al.’s 3D 1R recipe [Chase et al. 2011] (see section 3.3.3), Gi is the shear modulus for the

material of element i, Ei is Young’s modulus of elasticity for element i, li is the element’s length,

and (J i)y and (J i)z represent its area moment of inertia for bending up and down and side-to-side,

respectively. λm is explained below. As in eq. (3.8), the underlined digits in eq. (4.10c) indicate

tweaks we’ve made to to constants from [Chen et al. 2011] so that they sum evenly to 1.

44

www.manaraa.com

(kim)x =
Gi(Ki)x
liλm

(kim)y = κm
Ei(J i)y

li

(kim)z = κm
Ei(J i)z

li

(4.10a)

κ1 = 3.25 κ2 = 2.84 κ3 = 2.95 (4.10b)

γ1 = 0.12525 γ2 = 0.35025

γ3 = 0.38825 γ4 = 0.13625

(4.10c)

λm =
γm+1

γ2 + γ3 + γ4

(4.10d)

The formulas and constants in eqs. (4.10a) to (4.10c) for the springs at the local y- and

z-axes—for bending up and down and bending to the side, respectively—are taken from eqs. (3.6)

to (3.8), from the planar 3R PRBM recipe of [Su 2009, Chen et al. 2011].

The stiffness formula and constants in eqs. (4.10a) and (4.10d) for each local x-axis—for

twisting at each joint—are designed empirically to provide the same overall twist across the length

of the element as in Chase et al.’s 3D 1R recipe [Chase et al. 2011], but with a proportion of the

overall twist angle distributed among each of the three joints. The relative twist permitted at joint m

is weighted according to the relative length of its following link m+ 1 by the constant λm, which is

calculated by eq. (4.10d) as the ratio of the length of link m+ 1 to the total length of the final three

links.

45

www.manaraa.com

4.2.1 updateElement for the 3D 3R recipe

We provide a version of updateElement for the 3D 3R recipe which prepares a 3D 3R element i for

use with either version of the element-agnostic chain algorithms (for the unoptimized version, see

algorithm 3.1; for the optimized version, see algorithm 4.1). updateElement for this recipe applies

Chase et al.’s 3D joint update computations from within algorithm 3.2 to each of the three 3D joints

in sequence. Since it is based on Su’s and Chen et al.’s 3R PRBM [Su 2009, Chase et al. 2011], it

also accounts for the total force F i
Σ at the element tip, and computes additional static moment terms

for each joint accordingly.

Algorithm 4.2 iterates over all the spring joints of the element, starting near the base and

moving towards the tip. It operates on each local axis u in turn for each joint m. The operation on

each axis is similar to Chase et al.’s operation for a single axis [Chase et al. 2011]. The loops that

perform these nested operations begin on lines 2 and 3.

The most up-to-date momentM i
m experienced at the current joint m is computed on line

4, taking into account the most recent configuration of the links due to any previous joint/axis

operation. The first term of M i
m is simply the total moment M i

Σ at the element tip. The second

term is the moment term due to the total force F i
Σ. It comes from the standard torque equation with

the lever arm as the vector from the location P i
m of the current joint m to the element tip P i

4.

On line 6 we compute the current joint and axis angle (θim)u by solving Hooke’s law, with

the joint momentM i
m from line 4 projected onto the current local axis by the dot productM i

m ·uim.

On line 7, We compute the difference angle (∆θim)u, which is the difference of (θim)u with its

value from the previous chain iteration. On line 8, we then form the update matrix (Rm)u, which

represents a rotation around the current axis vector uim by the difference angle (∆θim)u about the

joint location P i
m.

The loop on lines 10-17 updates the following link end-points and frame basis vectors using

(Rm)u. The point P i
m at the current joint m needs no update, so it is skipped by indexing points

46

www.manaraa.com

Algorithm 4.2 updateElement for an element i from the 3D 3R PRBM recipe

1 Ri ← I

2 for joint index m = 1 to 3 do
3 for each local axis u ∈ {x,y, z} do

4 M i
m ←M i

Σ +
(
P i

4 − P i
m

)
× F i

Σ

5 // Torque at joint due toM i
Σ and F i

Σ

6 (θim)u ←
(
M i

m · uim
)
/(kim)u

7 (∆θim)u ← (θim)u − (θim)old
u

8 (Rm)u ← rotationMatrix

 axis = uim
angle = (∆θim)u
origin = P i

m


9 // Rotation for following points and local frames

10 for this and each following joint index s = m to 3 do

11 P i
s+1 ← (Rm)uP

i
s+1

12 // Update all following link points

13 for each local axis v ∈ {x,y, z} do
14 vis ← (Rm)uv

i
s

15 end for
16 // Update this and all following local frames

17 end for

18 Ri ← (Rm)uRi

19 // Accumulate all rotations for descendant elements

20 end for
21 end for

22 return Ri

47

www.manaraa.com

inside the loop with s+ 1. However, the axis vectors at the current joint m should be included—or

else the projection expression M i
m · uim on line 6 will not use the most up-to-date local vector—so

the index s is used for basis vectors.

Finally on line 18, we compose the most recent rotation (Rm)u into the cumulative effect of

Ri. Ri is returned after all the joint/axis operations have completed, so that the chain algorithm may

propagate the total element deflection on to all the descendants of element i.

4.2.2 transformElement for the 3D 3R recipe

We give pseudo-code in algorithm 4.3 for transformElement for the 3D 3R recipe. It applies the

transformation matrix Ri, as passed in from the chain algorithm, to all the points and local frame

basis vectors of the element j for which it is run.

Algorithm 4.3 transformElement for an element i from the 3D 3R PRBM recipe

1 for each point index m = 0 to 4 do
2 P i

m ← RiP i
m

3 // Transform all points
4 end for

5 for each local frame index m = 0 to 3 do
6 for each local axis u ∈ {x,y, z} do
7 uiu ← Riuiu
8 // Transform all local frame basis vectors
9 end for

10 end for

We repeat the caution about taking care that points and local basis vectors each be trans-

formed according to their type: points should be affected by the translation operations contained in

Ri, whereas basis vectors should only be affected by the rotations.

48

www.manaraa.com

Chapter 5

Results

Chase et al. verified the correctness of their 3D 1R chain algorithm by comparing chain

deflections to those obtained from a finite element analysis of the same chain and applied load

[Chase et al. 2011].

Their experiment successfully reproduced lateral torsional buckling, a phenomenon where

the beam deflects out of the plane parallel to the applied force. This occurs when one cross-sectional

dimension of the beam is much stiffer than the other, and minute material imperfections divert a

portion of the applied force sideways, and the more pliant dimension gives way.

They simulated a 100-inch-long polypropylene beam cantilevered out from a fixed anchor

point, with a narrow rectangular cross section. They applied a relatively strong transverse force

against the stiffer (wider) cross-sectional dimension of the beam. To simulate minute redirected

forces and thereby initiate out-of-plane buckling, they also applied a weaker perpendicular force

against the thinner dimension. Full details of the original experiment can be found in [Chase 2006,

Chase et al. 2011].

We performed similar experiments to verify our optimized chain algorithm and 3D 3R

PRBM recipe.

49

www.manaraa.com

5.1 Re-implementing [Chase et al. 2011] as a baseline

Chase published Visual Basic code for his algorithm in his thesis [Chase 2006]. We re-implemented

his algorithm in C++ to give fair runtime comparisons with our extensions, which we had also written

in C++. The re-implementation gave the same deflection results as [Chase et al. 2011, Chase 2006],

so comparing the results of our extensions and optimizations to the results of our re-implementation

gives a fair comparison of our methods to those of Chase et al. Hence, the run times and error values

we give in this chapter for Chase et al.’s algorithm (the “unoptimized 1R algorithm”) are from our

C++ version.

5.2 Our experiment setup

To verify that our extensions and optimizations improved runtimes and maintained accuracy, we ran

new experiments based on that of [Chase et al. 2011, Chase 2006]. We measured the runtimes and

accuracy of two different chain algorithms, each in combination with two different element types,

giving four cases for our experiments:

1. The unaltered algorithm of [Chase et al. 2011], with unoptimized O(n2) chain calculations

and 3D 1R PRBM elements.

2. Our optimized O(n) chain algorithm with Chase et al.’s original 3D 1R PRBM elements.

3. The unoptimized O(n2) algorithm with our 3D 3R PRBM elements.

4. The optimized O(n) algorithm with our 3D 3R PRBM elements.

We define the error value of a chain algorithm using a metric that compares the deflection

the algorithm yields to the deflection resulting from Chase et al.’s original algorithm (case 1) with

200 elements. This error metric is defined fully in section 5.2.1.

Chase et al. [Chase et al. 2011, Chase 2006] only supply results for case 1 at 200 elements.

However, our own experiments also require knowing the error of Chase’s original algorithm at other

50

www.manaraa.com

element counts. So to generate these error values, we ran case 1 at each of the desired counts, and

compared each resulting deflection to the deflection at 200 elements.

To test our hypothesis that the 3R algorithm would be accurate without the constraint from

the 1R algorithm of near-zero element lengths, we needed the error values just mentioned for case

1, as well as error values for the 3R algorithms (cases 3 and 4) at each of the same element counts.

The test then consisted in comparing the 3R error to the 1R error at each count. The results of this

and other tests are given in section 5.3

5.2.1 Definition of error metric

To define the error of a given chain setup from one of the four cases in section 5.2, we first define

a metric εP for determining a “difference” between two chains. εP is the mean squared error of

corresponding element tips on the two chains, using the Euclidean distance formula:

εP =
1

n

n∑
i=1

∥∥∥P i − P (m/n)i
∥∥∥2

(5.1)

P i is a tip point in the test chain, and P
(m/n)i

is its corresponding point in the expected chain,

where n is the number of elements in the test chain, and m is the number of elements in the expected

chain. In order to ensure that P i and P
(m/n)i

represent points at exactly the same length along

their respective chains, n must evenly divide m. The arithmetic for choosing corresponding points

between the two chains is illustrated in fig. 5.1.

51

www.manaraa.com

P
2

P 1

P
4

P 2

· · ·

· · ·

P
(m/2)(i−1)

P i−1

P
(m/2)i

P i

P
m−2

P n−1

P
m

P n

εP = 1
n

∑



∥∥∥P 1 − P 2
∥∥∥2∥∥∥P 2 − P 4
∥∥∥2

...∥∥∥P i−1 − P (m/2)(i−1)
∥∥∥2∥∥∥P i − P (m/2)i

∥∥∥2
...∥∥∥P n−1 − Pm−2

∥∥∥2∥∥∥P n − Pm
∥∥∥2

Figure 5.1: Illustration of how elements from an example test chain (shaded in lavender) are paired
with elements from the expected chain (white) for each term of the error metric εP . The expected
chain has m elements, and the test chain has n = m/2 elements.

Now, to determine the accuracy of one of the four cases from section 5.2 with a given

number of elements, we first set aside a copy of the undeflected chain. We deflect the first copy as a

test chain using the appropriate type of PRBM element and either the optimized or unoptimized

chain algorithm, as prescribed by the case being tested, with the given number of elements. We then

deflect the second chain copy as a baseline or expected chain, with 200 1R elements using Chase et

al.’s unoptimized algorithm (Case 1), which is known to give correct results when 200 elements are

used. The accuracy of the first copy, or test chain, is determined by computing εP between the two

deflected chain copies using eq. (5.1).

Though Chase et al. used only the tip point of the chain to verify their results, we included

interior chain points in our error metric in order to highlight some subtle improvements seen from

the use of our 3D 3R PRBM. During implementation and testing of the chain algorithm with 3D

3R elements, we noticed some circumstances in which the 3D 3R element gave rise to chain poses

that visually appeared closer to the correct pose all along the length of the chain, where the 3D

52

www.manaraa.com

1R element also gave the correct chain tip but looked less correct along the interior elements. We

therefore chose an error metric that would include interior element configurations, to capture such

differences. We elaborate on the observed differences in section 5.3.3.

5.3 Experiment results

5.3.1 Run times

We ran each of the four chain algorithm cases from section 5.2 with element counts of 1, 2, 4, 5,

8, 10, 20, 25, 40, 50, 100, and 200, which constitute all the whole divisors of the element count

200 from Chase et al.’s original experiment [Chase et al. 2011]. The tests were each run on a single

execution thread, on a laptop computer with an Intel Core i7-3630Q processor at 2.4GHz.

Table 5.1 gives run times for each algorithm at each element count. These are plotted in

fig. 5.2. Both axes of the graph are logarithmic to make the graph readable despite greatly increasing

differences between consecutive values across the domain and range.

These figures demonstrate that, as expected, the O(n) 1R chain algorithm is considerably

faster than the original O(n2) 1R algorithm, with a x25 speedup in the case with 200 elements. It

offers a x18 speedup at 200 elements with 3R PRBM elements.

The 3R algorithms are about 1.6 times slower on average than their 1R counterparts, which

is not surprising given the increased complexity of their updateElement method.

The steep incoming slope in the lower-left of the graph for the unoptimized and optimized

1R algorithms results from drastically smaller runtimes at 1 element.

5.3.2 Error of the O(n) optimization

Table 5.2 gives the error value εP for each of the same algorithms, PRBM types, and element counts

as in section 5.3.1 and table 5.1. These are plotted in fig. 5.3, again with logarithmic axes.

53

www.manaraa.com

Table 5.1: Runtimes, in seconds, for all four cases of the chain algorithm (see section 5.2) at
various element counts.

Algorithm runtimes (s)

Elements 1R Unopt. 1R Opt. 3R Unopt. 3R Opt.
1 0.002 0.003 0.366 0.409
2 0.405 0.349 0.665 0.569
4 0.971 0.628 1.326 0.976
5 1.190 0.686 1.799 1.249
8 1.891 0.970 3.117 1.806
10 2.889 1.147 4.153 2.132
20 7.121 1.842 9.866 3.495
25 9.645 2.122 13.118 4.081
40 18.519 2.867 24.470 5.453
50 25.778 3.298 33.240 6.243
100 73.499 5.378 95.534 10.101
200 255.877 9.583 330.970 18.670

Algorithm runtimes (s)

0.1

1

10

100

1000

1 2 4 5 8 10 20 25 40 50 100 200
Element count −−−→

R
un

tim
e

(s
)
−−
−→

1R Unoptimized 1R Optimized
3R Unoptimized 3R Optimized

Figure 5.2: A graph of the runtimes from table 5.1. The element count is plotted on the horizontal
axis, with its corresponding runtime on the vertical axis. Both axes are logarithmic.

54

www.manaraa.com

Table 5.2: Error εP for all four cases of the chain algorithm (see section 5.2) at various element
counts. Each error value is for comparison against the original unoptimized 1R algorithm (case 1)
at 200 elements.

Error εP of element tips (in.2)

Elements 1R Unopt. 1R Opt. 3R Unopt. 3R Opt.
1 1.31e+4 1.31e+4 1.99e+4 5.93e+3
2 1.79e+3 4.58e+3 2.86e+3 9.40e+3
4 3.62e+3 5.60e+3 3.45e+3 2.37e+3
5 3.30e+3 5.42e+3 2.59e+3 3.06e+3
8 3.01e+3 2.39e+3 1.43e+3 8.28e+2
10 1.46e+3 1.47e+3 2.21e+3 1.10e+3
20 8.76e+2 8.76e+2 5.45e+2 5.45e+2
25 1.49e+2 1.49e+2 2.79e+1 2.79e+1
40 7.83e−1 7.83e−1 4.05e−1 4.05e−1
50 4.58e−1 4.58e−1 2.18e−1 2.18e−1
100 5.47e−2 5.47e−2 1.88e−2 1.88e−2
200 0.00e+0 1.86e−21 9.28e−3 9.28e−3

Error εP of element tips (in.2)

0.001

0.01

0.1

1

10

100

1000

10000

100000

1 2 4 5 8 10 20 25 40 50 100 200
Element count −−−→

E
rr

or
ε P

(in
.2

)
−−
−→

1R Unoptimized 1R Optimized
3R Unoptimized 3R Optimized

Figure 5.3: A graph of the error values εP from table 5.2. The element count is plotted on the
horizontal axis, with the resulting error εP on the vertical axis. Both axes are logarithmic.

55

www.manaraa.com

Observe that there is very little difference in the numbers and graphs for the error values

between the optimized 1R algorithm and the unoptimized version, suggesting that they behave

much the same per element count. This supports our claim that the optimized O(n) version of the

chain calculations is correct, especially since its error is vanishingly small at 200 elements. Similar

observations apply for the optimized and unoptimized versions of the 3R chain algorithms.

The steep outgoing slope near the right edge of the graph in fig. 5.3 is the symptom of an

asymptote, which is expected in a logarithmic plot with zero and near-zero values.

5.3.3 Error of 3R algorithms versus 1R algorithms

Table 5.2 and the graph in fig. 5.3 show that for the element counts tested within the range 20 to

100, both the optimized and unoptimized versions of the 3R algorithm show lower error measures

than both of the 1R algorithms.

It is interesting, however, that the accuracy of both the 3R and 1R versions begins to fail

significantly near the same point in the spectrum of element counts, as can be seen by the jump in

εP by two orders of magnitude between 25 and 40 elements for all four algorithms. The effects of

this jump in the overall pose error can be seen clearly in fig. 5.4.

56

www.manaraa.com

1R Elements 3R Elements

20 Elements

25 Elements

40 Elements

200 Elements

20 Elements

25 Elements

40 Elements

200 Elements

F n

F n

F n

F n

F n

F n

F n

F n

Figure 5.4: Renders of deflected chains, each run with an optimized version of the chain algorithm.
The left column shows chains of 1R PRBM elements at counts of 20, 25, 40, and 200, running top
to bottom. The right column depicts 3R PRBM chains with each of the same element counts. The
same force, depicted by an arrow, is applied to the tip of each chain. This force points upward,
perpendicular to the floor of the scene, and parallel to the back wall.

The left column of fig. 5.4 shows the chain pose that results from application of the optimized

1R chain algorithm with 20, 25, 40, and 200 elements in each panel going from top to bottom, and

the right column shows the same but with the optimized 3R algorithm. The image in the bottom

left panel of the figure shows the expected, or correct, pose of the chain, since the error for the 1R

57

www.manaraa.com

optimized run with 200 elements approaches zero. The same force is applied to the tip of each chain.

This force points upward, perpendicular to the floor of the scene, and parallel to the back wall.

Compared visually to the expected pose, the poses for 20 and 25 elements for both 1R and

3R algorithms (first and second rows of fig. 5.4, both columns) are clearly wrong, though the 3R

chain with 25 elements (second row, right column) is more correct. Looking at the third row of

fig. 5.4, it is clear that we can only reasonably begin to call the chain poses “correct” starting at 40

elements. Thus, these renders confirm visually what the jump in the graph of fig. 5.3 indicated.

Though the chain looks better at 25 3R elements than with 25 1R elements, these results

still weaken support for our hypothesis that a chain of 3R PRBM elements would be fully accurate

for lower element counts than the 1R chain, since both the 1R and 3R algorithms begin to miss the

correct chain tip location at around the same element count.

It is worth making one final observation about the error of the 3R algorithms. Table 5.2

and fig. 5.3 show a greater error for the 3R algorithms at 200 elements than the 1R algorithms. This

is because the 1R algorithm is the error baseline, so its error is zero by definition. It is possible that

the 3R algorithm at 200 elements is nonetheless more physically accurate than our baseline; to be

sure, we would need to compare its deflection directly with the Finite Element simulation from

[Chase et al. 2011].

58

www.manaraa.com

Chapter 6

Conclusion and Future work

The runtime and accuracy results presented in chapter 5 demonstrate that PRBM-based

algorithms offer potential as a new, viable method for simulating elastic materials in computer

graphics. They offer the simplicity of mass-spring simulations, but also support torsion, and offer

a clear parameterization from measurable physical quantities. Their extensions to 3D naturally

support reduced coordinate formulations, which integrate well into traditional animation workflows

with great advantages [Hadap 2006] (for more detail, see section 6.2.1).

The optimized O(n)-complexity chain algorithm we have presented will give immediate

speedup benefits to engineering work flows based on the O(n2) version. Its application for rapid

static simulation may also be of interest in film and animation production as an alternative solution

for simulation pre-roll, or as a static modeling tool for physically plausible poses, such as tree

branches swept sideways under a prevailing wind, or deducing initial “gravity-free” poses from

models captured under the effects of gravity.

There remain improvements to be made to these methods. We suggest some extensions

to the static methods in section 6.1. To fully realize their potential for animation and gaming

applications, our methods will need to be extended to fully support dynamic simulations with

constraint enforcement, collisions, and friction. Section 6.2 therefore explores promising leads for

dynamic PRBM-based methods with these features. Finally, in section 6.3, we explore a number of

ways the PRBM could efficiently support dynamic, online topology and material changes such as

automatic fracture detection or time-variant elasticity.

59

www.manaraa.com

6.1 Extending the static algorithm

This section presents some initial leads for extending the static methods in this paper. Section 6.1.1

proposes an experiment to investigate whether it is worth further pursuing extensions based on the

3R PRBM as a way of reducing necessary element counts, and section 6.1.2 identifies resources for

introducing constraint enforcement to the static chain algorithm.

6.1.1 Alternative 3D 3R configurations

Our updateElement method and spring configurations for the 3D 3R PRBM was inspired as a

direct extension of Chase et al.’s technique from the 3D 1R PRBM [Chase et al. 2011]. Though we

verified in chapter 5 that our method gives correct results in the chain algorithm, it does not reduce

the number of elements required for the fully correct result, as compared to the 1R element. Yet the

hypothesis still seems reasonable that a PRBM recipe for combined loads would accurately support

chains of fewer elements.

A near-term follow-on study could experiment with Su’s and Chen et al.’s unmodified planar

3R element [Su 2009, Chen et al. 2011] in a strictly planar chain algorithm. If this 3R planar chain

does support accuracy with lower element counts than a planar 1R chain, there would be reason

to suppose the fault in our 3D case lay with our particular way of extending the 3R recipe to

3D. It would then be worth exploring alternative configurations for a 3D 3R recipe and update-

Element method. Mechanics- or robotics-based methods for rigid serial linkages, such as those in

[Tsai 1999], would be a worthwhile place to start.

6.1.2 Static constraints

We did not address constraints or collision handling for the static case in this work, but we wish

to note that some promising leads for constraint enforcement can be gleaned from chapters 2 and

60

www.manaraa.com

6.2 part (A) of Chase’s thesis [Chase 2006], where he mentions techniques for the application of

boundary conditions beyond the applied forces and moments we address in this work.

6.2 Proposed dynamic PRBM methods

Here we discuss what we regard as the next major step for PRBM-based methods: the development

of general, dynamic simulations with PRBM elements. We first identify, in sections 6.2.1 and 6.2.2,

some important attributes and characteristics that dynamic PRBM methods should support, in terms

of how well they integrate with existing animation pipelines, as well as practical issues of stability

and design complexity for the numerical integration methods they will require. Sections 6.2.3

and 6.2.4 then recommend some directions and general approaches for satisfying these criteria,

based on preliminary research.

6.2.1 Reduced coordinate approaches

Reduced coordinates (also known as generalized coordinates) are so called because each joint

deflection is given as a single scalar in terms of the local joint axis rather than as a vector in world or

global coordinates. Chase et al.’s extension of the PRBM to 3D is essentially a reduced coordinate

formulation, since the spring stiffness and deflection parameters are represented in local joint space.

Thus, we regard a reduced coordinate formulation to be a natural choice for extending the chain

solution to the dynamic case.

Using a reduced coordinate method should also hold significant benefits for incorporation

with existing animation and simulation pipelines. For example, Hadap points out that for his work

[Hadap 2006], a reduced coordinate formulation exactly matched the rig-space parameterizations

for character articulation, which made the simulation method fit naturally into an existing animation

pipeline, and which also allowed him to trivially extend the methods to support a number of tools for

artistic direction of the simulation results. Hahn et al. dedicated an entire paper [Hahn et al. 2012]

61

www.manaraa.com

to the benefits gained from a simulation method that can output its results directly to rig-space, so

it can be edited and manipulated directly by animators within their familiar work flow. Since our

method is a reduced coordinate method that works directly in the space of joint articulations, it

should benefit similarly.

6.2.2 Numerical integration in two key cases

Issues of numerical integration will need to be addressed for the dynamic case. The stiffness values

generated by the PRBM recipes naturally lead to stiff differential equations, so stability will be a

prime consideration in choosing an integration scheme.

We find it useful to view the problem of integrating a chain of elements in terms of two key

cases:

1. Stable and correct integration to update individual element deformations

2. Stable and correct integration of inertial forces from element to element across the chain (take,

for example, the “acceleration propagation” steps of Featherstone from [Mirtich 1996])

If the two cases can be cleanly decoupled, the dynamic algorithm will be much simpler. With

the integration of one element being independent of other elements (the inter-relationships being

correctly handled by case 2), the complexity and dimensionality of its internal differential equations

will be constant regardless of the number of elements, being only a function of the local, fixed-size

spring system. These will be much easier to solve than the more general non-linear equations that

are often necessary with general mass-spring methods. (for a classical example in graphics of

solving such systems, see [Baraff and Witkin 1998]).

6.2.3 Approaches to element integration (case 1)

The place to start for dynamic PRBM methods would be [Yu et al. 2005], which gives new stiffness

parameters for correct energy conservation when the planar 1R recipe is used in a dynamic context.

62

www.manaraa.com

This dynamic PRBM will need to be extended to 3D. Similarly, the 3R PRBM of [Su 2009,

Chen et al. 2011] would either need to be validated as correct for dynamic applications or adjusted

accordingly, and extended to 3D.

An early dynamic prototype of ours incorporates our own 3D version of Yu et al.’s dynamic

1R PRBM, with an original integration scheme, into the unaltered static chain algorithm—essentially

ignoring case 2 while dropping in a solution for case 1. While this leads to incorrect overall results—

it seems the accumulated quantities of the chain algorithm do not correctly propagate inertial

forces for the dynamic case, leading to wildly exaggerated whipping motions—our internal element

integration method did show promise. Judging subjectively from the animated results over long

simulation times, the internal element integration is very stable, since individual elements retain their

correct lengths and a reasonable appearance, and the chain retains its topology and overall integrity

even while passing through extreme velocities and in and out of tightly curled configurations.

(Though an alternative explanation of this seeming stability may be that the reduced coordinate

formulation is simply doing a very good job maintaining element lengths).

Our dynamic element integration method was inspired by the derivation of an implicit

integration method in [Baraff and Witkin 1998], though ours is simplified by solving a system of

fixed size for each PRBM element locally, where [Baraff and Witkin 1998] must be equipped to

solve a more generalized, if sparse, spring system. We first re-express the spring update equations as

a Backwards Euler formulation. We then solve the first-order Taylor expansion of this formulation

using analytic derivatives of the rotation matrices.

6.2.4 Approaches to chain integration (case 2)

We have already begun designing a reduced-coordinate method for a dynamic PRBM chain which

is based on Featherstone’s classic method for articulated rigid bodies. In exploring dynamic designs,

we have found a tutorial on Featherstone’s method by Mirtich to be of great value. The tutorial is

found in Mirtich’s oft-cited Ph.D. thesis [Mirtich 1996], and gives a clear derivation from physics

63

www.manaraa.com

and mechanics, and even adds an extension for treating free bodies (we have limited our discussion

to anchored bodies in this paper). [Kokkevis 2004] will also be useful, for expanding Featherstone’s

method to handle constraint enforcement.

We are unsure at this point whether it is physically correct to disregard internal element

deformations when computing Featherstone’s inertial force propagations across the chain, or how

they must be adjusted if cases 1 and 2 are inherently coupled. [Barbič and Zhao 2011, Bertails 2009]

both implement algorithms similar to Featherstone’s, so they merit closer study for insights about

how to develop Featherstone with non-rigid elements.

With some additional research since beginning the dynamic design, however, we have reason

to fear that Featherstone will be unstable for long chains of elements. Hadap lists several reasons

why networks of rods can give rise to “stiff and highly non-linear differential equations . . . [which]

call for an implicit integration6 scheme” [Hadap 2006]. We surmise that these differential equations

would be especially difficult to stabilize with a recursive method over long chains of elements, since

instability by its very nature is compounded by propagation and repetition. The problem would only

be exacerbated by the stiff springs and potentially large local deformations of each PRBM element.

Unfortunately, Hadap, citing his earlier work [Hadap 2003], claims that implicit integration

is difficult to implement with prior reduced coordinate methods such as Featherstone’s. Though

[Barbič and Zhao 2011, Bertails 2009] show stable results, their examples are limited to fairly

shallow graphs. By contrast, PRBM recipes give lower-order elements, requiring serial sub-chains

of numerous elements in order to capture detailed shapes. Thus, if it is true that the implied

instability of Featherstone is related to connectivity depth, an alternative will be necessary to keep

PRBM chains stable.

Hadap presents an alternative reduced coordinate method which is based on Differen-

tial Algebraic Equations, combining the benefits of reduced coordinates with stable integration
6Stiff, non-linear differential equations can be difficult to solve stably, that is, without irretrievably straying from the

correct solution. Implicit integration, so called because it typically employs an iterative or indirect means of arriving at
a solution, rather than an explicit closed formula, is a classic method in graphics for stable simulation of stiff systems.
See [Baraff and Witkin 1998] for an important introduction of implicit integration to the graphics field.

64

www.manaraa.com

[Hadap 2006]. The method has linear runtime complexity in the number of elements, and supports

collisions, constraint enforcement, and static and dynamic friction. Hadap’s method may therefore

be more appropriate than Featherstone-like methods such as [Barbič and Zhao 2011, Bertails 2009]

for addressing case 2 when PRBM elements are involved. With luck, completing a viable dynamic

PRBM chain will be as simple as substituting our dynamic PRBM prototype from section 6.2.3 into

Hadap’s framework.

6.3 Directable, dynamic topology and material change

Here we discuss a number of ways the rapid, efficient parameterizations of PRBM recipes could be

used to re-parameterize dynamic PRBM chains and elements during actual simulation to achieve

dynamic effects not possible with pre-computed reduction methods.

6.3.1 Automatic stress and fracture detection

Many of the published PRBM recipes include simple formulas for computing the stresses on a

PRBM element under a given load, as well as for computing the maximum stress an element may

support. For highly complex simulations in particular, these formulas could be the basis of an

efficient system for automatically detecting fracture conditions.

Consider a hypothetical film scene with numerous trees in a forest under heavy winds,

with dynamically snapping limbs, twigs, and leaves blowing free. It would be prohibitively time-

consuming for animators to manually script and direct each instance of fracture.

PRBM-based fracture detection could solve this problem simply and efficiently. Augmenting

a dynamic PRBM method with stress and fracture detection would require a trivial extension to the

updateElement method. When a complete fracture is detected and initiated, separating the branch

as a free, independent PRBM chain would be a simple matter of severing the child relationship from

the tree and designating a new root element for the branch.

65

www.manaraa.com

By contrast, FEM reduction methods would be less simple, both for computing stresses and

locations of fracture, and for executing the actual separation as distinct reduced bodies. For example,

Barbič and Zhao’s substructuring [Barbič and Zhao 2011] would either limit fracture points to the

rigid sub-domain interfaces, or would require re-computing additional sub-domains to replace the

existing domain containing the true site of fracture. Dynamic correctness would require that the

new sub-domains be re-reduced from the original full resolution volume mesh; simply partitioning

and splitting the existing reduced domain would not suffice.

Finite Elements simulations can nonetheless produce detailed, higher-dimensional effects

of which PRBMs are incapable, such as cracking, splitting, and splintering, as well as loosening

and ejecting minor debris. Where such detail is desirable, the PRBM method could still be used

to detect and locate fracturing elements very efficiently. A suitable FEM volume mesh could then

be generated on-demand, and the FEM simulation could be limited and localized to the fracture

region. If the FEM simulation determines that only partial fracture should result, and the branch

will hold on by a smaller thread of wood or bark, a new PRBM element could be substituted and

re-parameterized by the geometry and elasticity of the remaining connection, and the system could

return to the simpler PRBM simulation. If stress sufficient for full fracture should later arise, the

new PRBM element could detect it, and the FEM process could be repeated.

6.3.2 Efficient, online material change

PRBM recipes and their prescribed parameterizations are so simple that dynamic simulations could

be augmented to support any number of online topology changes or material changes very efficiently,

simply by updating PRBM input parameters during simulation. For example, creep and fatigue,

or the tendency of elastic materials to lose their elasticity fully or by degrees under a sustained or

heavy load, could be modeled by measuring the time duration of a load or by detecting high stresses

at a given moment, and adjusting the PRBM’s input elasticity accordingly.

66

www.manaraa.com

Since the PRBM input parameters are simple functions of intuitive physical quantities,

time-dependent changes could be readily controlled by animators, simply by adjusting key-frames

and animation curves for the intuitive parameters. Imagine, for example, a time-lapse of a growing

tree, with changing graph topology as new branches emerge and are added, changing elasticity as

green shoots are replaced by wood, and automatically updated area moments of inertia as the trunk

and branches thicken. Times and locations for the addition of new branches, the changing elasticity

values, and the rate of diameter increases could all be directly controlled by animators. All the

resulting PRBM parameter changes could take place frame by frame with little additional cost.

In summary, future dynamic PRBM-based methods should readily support online topology

and material changes, whether they are pre-scripted by animators, or they arise at simulation time

as a result of programmatic detection methods.

67

www.manaraa.com

Appendix A

Alternative O(n) formulation

Overall, the alternative optimization of the chain algorithm is identical to the optimization

presented in section 4.1, except for how we compute eq. (4.4a) for aiΣ from section 4.1.2. aiΣ is still

computed in constant time for a given step i of the chain algorithm, using the transformation matrix

Ri
Σ resulting from the previous steps of the algorithm. For consistency with matrix indexing, we will

switch from indexing vector coordinates with the alphabetic symbols x, y, z, w to the corresponding

numeric indices 1, 2, 3, 4.

To begin, we define the matrix Si as a sum of vector outer products,

Si =
n∑
j=i

P j
(
F j
)T (A.1)

Consequently, for a given entry sαβ of Si,

sαβ =
n∑
j=i

(P j)α(F j)β (A.2)

Si may be pre-computed for all i as a vector suffix scan over matrix addition. Then, during a

given step i of the chain algorithm, a useful matrix Qi can be computed in constant time:

Qi = Ri
ΣSi (A.3)

Its usefulness will be evident in a moment.

68

www.manaraa.com

Referring back to eq. (4.4a) and applying the cross product in its right-hand side, we obtain

aiΣ =
n∑
j=i

(
Ri

ΣP
j
)
× F j

=
n∑
j=i



(Ri
ΣP

j)2(F j)3 − (Ri
ΣP

j)3(F j)2

(Ri
ΣP

j)3(F j)1 − (Ri
ΣP

j)1(F j)3

(Ri
ΣP

j)1(F j)2 − (Ri
ΣP

j)2(F j)1

0



Here, we recall from matrix multiplication that with rαβ denoting an entry of Ri
Σ, we have

(Ri
ΣP

j)α =
∑4

u=1 rαu(P j)u. Hence, continuing the derivation, aiΣ becomes

n∑
j=i



(
4∑

u=1

r2u(P j)u

)
(F j)3 −

(
4∑

u=1

r3u(P j)u

)
(F j)2(

4∑
u=1

r3u(P j)u

)
(F j)1 −

(
4∑

u=1

r1u(P j)u

)
(F j)3(

4∑
u=1

r1u(P j)u

)
(F j)2 −

(
4∑

u=1

r2u(P j)u

)
(F j)1

0



69

www.manaraa.com

Since for all α, rαu is constant over the index of summation j, we can push the outermost

summation inside the inner summation contained in each entry of the vector, yielding

aiΣ =



4∑
u=1

r2u

n∑
j=i

(P j)u(F j)3 −
4∑

u=1

r3u

n∑
j=i

(P j)u(F j)2

4∑
u=1

r3u

n∑
j=i

(P j)u(F j)1 −
4∑

u=1

r1u

n∑
j=i

(P j)u(F j)3

4∑
u=1

r1u

n∑
j=i

(P j)u(F j)2 −
4∑

u=1

r2u

n∑
j=i

(P j)u(F j)1

0



=



4∑
u=1

r2usu3 −
4∑

u=1

r3usu2

4∑
u=1

r3usu1 −
4∑

u=1

r1usu3

4∑
u=1

r1usu2 −
4∑

u=1

r2usu1

0



The second equality follows directly from eq. (A.2). Finally, from eq. (A.3) and the definition

of matrix multiplication, we see that qαβ =
∑4

u=1 rαusuβ , so

aiΣ =



q23 − q32

q31 − q13

q12 − q21

0


(A.4)

In summary, Si is pre-computed from eq. (A.1) for all i at the start of the chain algorithm,

then during each step i of the algorithm, Qi is computed from eq. (A.3) using the cumulative

transformation Ri
Σ from previous steps. Finally eq. (A.4) computes aiΣ from the entries of Qi.

70

www.manaraa.com

We find this alternative formulation of the linear-time optimization interesting for a cu-

rious pattern which emerges: while the cross product appearing in eq. (4.4a) prevents a trivial

factorization of the summation, the final form of the optimization in eq. (A.4) still bears a striking

notational resemblance to the definition of the cross product. The only difference is the use of direct

juxtaposition of indices to denote a matrix entry, rather than the juxtaposition of indexed symbols to

denote multiplication of two scalars:

b× c =



(b)2(c)3 − (b)3(c)2

(b)3(c)1 − (b)1(c)3

(b)1(c)2 − (b)2(c)1

0



71

www.manaraa.com

Appendix B

The cross product matrix

The traditional cross product operator ‘×’ for 3D vectors can be re-written in terms of

matrix multiplication. Given two vectors a and b (with homogenous w-coordinates, per our

implementation), the cross product a × b can be written one of two ways, depending on which

vector is used to form the cross product matrix [Wikipedia 2013a]:

a× b = [a]×b = [b]T×a

where T denotes matrix transposition, and

[a]× =



0 −az ay 0

az 0 −ax 0

−ay ax 0 0

0 0 0 0



72

www.manaraa.com

References

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simulation. In Proceedings of the 25th

annual conference on Computer graphics and interactive techniques, ACM, New York, NY,

USA, SIGGRAPH ’98, 43–54.

BARBIČ, J., AND ZHAO, Y. 2011. Real-time large-deformation substructuring. ACM Trans. on

Graphics (SIGGRAPH 2011) 30, 4, 91:1–91:7.

BARBIČ, J., SIN, F., AND GRINSPUN, E. 2012. Interactive editing of deformable simulations.

ACM Trans. Graph. 31, 4 (July), 70:1–70:8.

BERGOU, M., WARDETZKY, M., ROBINSON, S., AUDOLY, B., AND GRINSPUN, E. 2008.

Discrete elastic rods. ACM Trans. Graph. 27, 3 (Aug.), 63:1–63:12.

BERTAILS, F. 2009. Linear time super-helices. Computer Graphics Forum 28, 2, 417–426.

CASATI, R., AND BERTAILS-DESCOUBES, F. 2013. Super space clothoids. ACM Trans. Graph.

32, 4 (July), 48:1–48:12.

CHASE, R. P., TODD, R. H., HOWELL, L. L., AND MAGLEBY, S. P. 2011. A 3-d chain algorithm

with pseudo-rigid-body model elements. Mechanics Based Design of Structures and Machines

39, 1, 142–156.

CHASE, R. P. 2006. Large 3-D Deflection and Force Analysis of Lateral Torsional Buckled Beams.

Master’s thesis, Brigham Young University.

CHEN, G., XIONG, B., AND HUANG, X. 2011. Finding the optimal characteristic parameters for 3r

pseudo-rigid-body model using an improved particle swarm optimizer. Precision Engineering

73

www.manaraa.com

35, 3, 505 – 511.

COROS, S., MARTIN, S., THOMASZEWSKI, B., SCHUMACHER, C., SUMNER, R., AND GROSS,

M. 2012. Deformable objects alive! ACM Trans. Graph. 31, 4 (July), 69:1–69:9.

HADAP, S. 2003. Hair simulation. PhD thesis, MIRALab, CUI, University of Geneva.

HADAP, S. 2006. Oriented strands: Dynamics of stiff multi-body system. In Proceedings of

the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation, Eurographics

Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’06, 91–100.

HAHN, F., MARTIN, S., THOMASZEWSKI, B., SUMNER, R., COROS, S., AND GROSS, M. 2012.

Rig-space physics. ACM Trans. Graph. 31, 4 (July), 72:1–72:8.

HARRIS, M., SENGUPTA, S., AND OWENS, J. D. 2007. Parallel prefix sum (scan) with CUDA. In

GPU Gems 3, H. Nguyen, Ed. Addison Wesley, August, ch. 39, 851–876.

HILDEBRANDT, K., SCHULZ, C., VON TYCOWICZ, C., AND POLTHIER, K. 2012. Interactive

spacetime control of deformable objects. ACM Trans. Graph. 31, 4 (July), 71:1–71:8.

HOWELL, L. L. 2001. Compliant Mechanisms. John Wiley & Sons.

KHAREVYCH, L., MULLEN, P., OWHADI, H., AND DESBRUN, M. 2009. Numerical coarsening

of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3 (July), 51:1–51:8.

KOKKEVIS, E. 2004. Practical physics for articulated characters. In Game Developers Conference.

MARTIN, S., KAUFMANN, P., BOTSCH, M., GRINSPUN, E., AND GROSS, M. 2010. Unified

simulation of elastic rods, shells, and solids. ACM Trans. Graph. 29, 4 (July), 39:1–39:10.

MIRTICH, B. V. 1996. Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis,

University of California at Berkeley.

MÜLLER, M., AND CHENTANEZ, N. 2011. Solid simulation with oriented particles. ACM Trans.

Graph. 30, 4 (July), 92:1–92:10.

74

www.manaraa.com

NESME, M., KRY, P. G., JEŘÁBKOVÁ, L., AND FAURE, F. 2009. Preserving topology and

elasticity for embedded deformable models. ACM Trans. Graph. 28, 3 (July), 52:1–52:9.

PAULY, J., AND MIDHA, A. 2006. Pseudo-rigid-body model chain algorithm, part 1: Introduction

and concept development. In Volume 2: 30th Annual Mechanisms and Robotics Conference,

Parts A and B, vol. 2, ASME, 173–181.

SELLE, A., LENTINE, M., AND FEDKIW, R. 2008. A mass spring model for hair simulation. ACM

Trans. Graph. 27, 3 (Aug.), 64:1–64:11.

SIEK, J., LEE, L.-Q., LUMSDAINE, A., SUTTON, A., AND WILLCOCK, J., 2011. The boost

graph library. Retrieved Oct. 16, 2011 from http://www.boost.org/doc/libs/1_

47_0/libs/graph/doc/index.html.

SU, H.-J. 2009. A pseudorigid-body 3r model for determining large deflection of cantilever beams

subject to tip loads. Journal of Mechanisms and Robotics 1, 2.

SUEDA, S., JONES, G. L., LEVIN, D. I. W., AND PAI, D. K. 2011. Large-scale dynamic

simulation of highly constrained strands. ACM Trans. Graph. 30, 4 (July), 39:1–39:10.

TSAI, L.-W. 1999. Robot Analysis : The Mechanics of Serial and Parallel Manipulators. John

Wiley & Sons.

WIKIPEDIA, 2013. Cross product — wikipedia, the free encyclopedia. Retrieved

July 26, 2013 from http://en.wikipedia.org/w/index.php?title=Cross_

product&oldid=563797268.

WIKIPEDIA, 2013. List of moment of areas — wikipedia, the free encyclopedia. Retrieved

Aug. 11, 2013 from http://en.wikipedia.org/w/index.php?title=List_

of_moment_of_areas&oldid=560450988.

YOUNG, W. C., AND BUDNYAS, R. G. 2002. Roark’s Formulas for Stress and Strain, 7 ed.

McGraw-Hill.

75

http://www.boost.org/doc/libs/1_47_0/libs/graph/doc/index.html
http://www.boost.org/doc/libs/1_47_0/libs/graph/doc/index.html
http://en.wikipedia.org/w/index.php?title=Cross_product&oldid=563797268
http://en.wikipedia.org/w/index.php?title=Cross_product&oldid=563797268
http://en.wikipedia.org/w/index.php?title=List_of_moment_of_areas&oldid=560450988
http://en.wikipedia.org/w/index.php?title=List_of_moment_of_areas&oldid=560450988

www.manaraa.com

YU, Y.-Q., HOWELL, L. L., YUE, Y., HE, M.-G., AND LUSK, C. 2005. Dynamic modeling of

compliant mechanisms based on the pseudo-rigid-body model. Journal of Mechanical Design

127, 4 (February), 760–765.

76

